/*--------------------------------------------------------------------------------------------------------------------------------------------------- * irmp.c - infrared multi-protocol decoder, supports several remote control protocols * * Copyright (c) 2009-2010 Frank Meyer - frank(at)fli4l.de * * $Id: irmp.c,v 1.88 2011/02/08 08:40:27 fm Exp $ * * ATMEGA88 @ 8 MHz * * Typical manufacturers: * * SIRCS - Sony * NEC - NEC, Yamaha, Canon, Tevion, Harman/Kardon, Hitachi, JVC, Pioneer, Toshiba, Xoro, Orion, and many other Japanese manufacturers * SAMSUNG - Samsung * SAMSUNG32 - Samsung * MATSUSHITA - Matsushita * KASEIKYO - Panasonic, Denon & other Japanese manufacturers (members of "Japan's Association for Electric Home Application") * RECS80 - Philips, Nokia, Thomson, Nordmende, Telefunken, Saba * RC5 - Philips and other European manufacturers * DENON - Denon, Sharp * RC6 - Philips and other European manufacturers * APPLE - Apple * NUBERT - Nubert Subwoofer System * B&O - Bang & Olufsen * PANASONIC - Panasonic (older, yet not implemented) * GRUNDIG - Grundig * NOKIA - Nokia * SIEMENS - Siemens, e.g. Gigaset M740AV * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * SIRCS * ----- * * frame: 1 start bit + 12-20 data bits + no stop bit * data: 7 command bits + 5 address bits + 0 to 8 additional bits * * start bit: data "0": data "1": stop bit: * -----------------_________ ------_____ ------------______ * 2400us 600us 600us 600us 1200us 600 us no stop bit * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * NEC + extended NEC * ------------------------- * * frame: 1 start bit + 32 data bits + 1 stop bit * data NEC: 8 address bits + 8 inverted address bits + 8 command bits + 8 inverted command bits * data extended NEC: 16 address bits + 8 command bits + 8 inverted command bits * * start bit: data "0": data "1": stop bit: * -----------------_________ ------______ ------________________ ------______.... * 9000us 4500us 560us 560us 560us 1690 us 560us * * * Repetition frame: * * -----------------_________------______ .... ~100ms Pause, then repeat * 9000us 2250us 560us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * SAMSUNG * ------- * * frame: 1 start bit + 16 data(1) bits + 1 sync bit + additional 20 data(2) bits + 1 stop bit * data(1): 16 address bits * data(2): 4 ID bits + 8 command bits + 8 inverted command bits * * start bit: data "0": data "1": sync bit: stop bit: * ----------______________ ------______ ------________________ ------______________ ------______.... * 4500us 4500us 550us 450us 550us 1450us 550us 4500us 550us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * SAMSUNG32 * ---------- * * frame: 1 start bit + 32 data bits + 1 stop bit * data: 16 address bits + 16 command bits * * start bit: data "0": data "1": stop bit: * ----------______________ ------______ ------________________ ------______.... * 4500us 4500us 550us 450us 550us 1450us 550us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * MATSUSHITA * ---------- * * frame: 1 start bit + 24 data bits + 1 stop bit * data: 6 custom bits + 6 command bits + 12 address bits * * start bit: data "0": data "1": stop bit: * ----------_________ ------______ ------________________ ------______.... * 3488us 3488us 872us 872us 872us 2616us 872us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * KASEIKYO * -------- * * frame: 1 start bit + 48 data bits + 1 stop bit * data: 16 manufacturer bits + 4 parity bits + 4 genre1 bits + 4 genre2 bits + 10 command bits + 2 id bits + 8 parity bits * * start bit: data "0": data "1": stop bit: * ----------______ ------______ ------________________ ------______.... * 3380us 1690us 423us 423us 423us 1269us 423us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * RECS80 * ------ * * frame: 2 start bits + 10 data bits + 1 stop bit * data: 1 toggle bit + 3 address bits + 6 command bits * * start bit: data "0": data "1": stop bit: * -----_____________________ -----____________ -----______________ ------_______.... * 158us 7432us 158us 4902us 158us 7432us 158us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * RECS80EXT * --------- * * frame: 2 start bits + 11 data bits + 1 stop bit * data: 1 toggle bit + 4 address bits + 6 command bits * * start bit: data "0": data "1": stop bit: * -----_____________________ -----____________ -----______________ ------_______.... * 158us 3637us 158us 4902us 158us 7432us 158us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * RC5 + RC5X * ---------- * * RC5 frame: 2 start bits + 12 data bits + no stop bit * RC5 data: 1 toggle bit + 5 address bits + 6 command bits * RC5X frame: 1 start bit + 13 data bits + no stop bit * RC5X data: 1 inverted command bit + 1 toggle bit + 5 address bits + 6 command bits * * start bit: data "0": data "1": * ______----- ------______ ______------ * 889us 889us 889us 889us 889us 889us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * DENON * ----- * * frame: 0 start bits + 16 data bits + stop bit + 65ms pause + 16 inverted data bits + stop bit * data: 5 address bits + 10 command bits * * Theory: * * data "0": data "1": * ------________________ ------______________ * 275us 775us 275us 1900us * * Practice: * * data "0": data "1": * ------________________ ------______________ * 310us 745us 310us 1780us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * RC6 * --- * * RC6 frame: 1 start bit + 1 bit "1" + 3 mode bits + 1 toggle bit + 16 data bits + 2666 µs pause * RC6 data: 8 address bits + 8 command bits * * start bit toggle bit "0": toggle bit "1": data/mode "0": data/mode "1": * ____________------- _______------- -------_______ _______------- -------_______ * 2666us 889us 889us 889us 889us 889us 444us 444us 444us 444us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * APPLE * ----- * * frame: 1 start bit + 32 data bits + 1 stop bit * data: 16 address bits + 11100000 + 8 command bits * * start bit: data "0": data "1": stop bit: * -----------------_________ ------______ ------________________ ------______.... * 9000us 4500us 560us 560us 560us 1690 us 560us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * NUBERT (subwoofer system) * ------------------------- * * frame: 1 start bit + 10 data bits + 1 stop bit * data: 0 address bits + 10 command bits ? * * start bit: data "0": data "1": stop bit: * ----------_____ ------______ ------________________ ------______.... * 1340us 340us 500us 1300us 1340us 340us 500us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * BANG_OLUFSEN * ------------ * * frame: 4 start bits + 16 data bits + 1 trailer bit + 1 stop bit * data: 0 address bits + 16 command bits * * 1st start bit: 2nd start bit: 3rd start bit: 4th start bit: * -----________ -----________ -----_____________ -----________ * 210us 3000us 210us 3000us 210us 15000us 210us 3000us * * data "0": data "1": data "repeat bit": trailer bit: stop bit: * -----________ -----_____________ -----___________ -----_____________ -----____... * 210us 3000us 210us 9000us 210us 6000us 210us 12000us 210us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * GRUNDIG * ------- * * packet: 1 start frame + 19,968ms pause + N info frames + 117,76ms pause + 1 stop frame * frame: 1 pre bit + 1 start bit + 9 data bits + no stop bit * pause between info frames: 117,76ms * * data of start frame: 9 x 1 * data of info frame: 9 command bits * data of stop frame: 9 x 1 * * pre bit: start bit data "0": data "1": * ------____________ ------______ ______------ ------______ * 528us 2639us 528us 528us 528us 528us 528us 528us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * NOKIA: * ------ * * Timing similar to Grundig, but 16 data bits: * frame: 1 pre bit + 1 start bit + 8 command bits + 8 address bits + no stop bit * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * SIEMENS: * -------- * * SIEMENS frame: 1 start bit + 22 data bits + no stop bit * SIEMENS data: 13 address bits + 1 repeat bit + 7 data bits + 1 unknown bit * * start bit data "0": data "1": * -------_______ _______------- -------_______ * 250us 250us 250us 250us 250us 250us * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * PANASONIC (older protocol, yet not implemented, see also MATSUSHITA, timing very similar) * ----------------------------------------------------------------------------------------- * * frame: 1 start bit + 22 data bits + 1 stop bit * 22 data bits = 5 custom bits + 6 data bits + 5 inverted custom bits + 6 inverted data bits * * European version: T = 456us * USA & Canada version: T = 422us * * start bit: data "0": data "1": stop bit: * 8T 8T 2T 2T 2T 6T 2T * -------------____________ ------_____ ------_____________ ------_______.... * 3648us 3648us 912us 912us 912us 2736us 912us (Europe) * 3376us 3376us 844us 844us 844us 2532us 844us (US) * *--------------------------------------------------------------------------------------------------------------------------------------------------- * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *--------------------------------------------------------------------------------------------------------------------------------------------------- */ #if defined(__PCM__) || defined(__PCB__) || defined(__PCH__) // CCS PIC Compiler instead of AVR #define PIC_CCS_COMPILER #endif #ifdef unix // test on linux/unix #include #include #include #include #include #define ANALYZE #define PROGMEM #define memcpy_P memcpy #else // not unix: #ifdef WIN32 #include #include typedef unsigned char uint8_t; typedef unsigned short uint16_t; #define ANALYZE #define PROGMEM #define memcpy_P memcpy #else #ifndef CODEVISION #ifdef PIC_CCS_COMPILER #include typedef unsigned int8 uint8_t; typedef unsigned int16 uint16_t; #define PROGMEM #define memcpy_P memcpy #else // AVR: #include #include #include #include #include #include #endif // PIC_CCS_COMPILER #endif // CODEVISION #endif // windows #endif // unix #ifndef IRMP_USE_AS_LIB #include "irmpconfig.h" #endif #include "irmp.h" #if IRMP_SUPPORT_GRUNDIG_PROTOCOL == 1 || IRMP_SUPPORT_NOKIA_PROTOCOL == 1 #define IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL 1 #else #define IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL 0 #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 || IRMP_SUPPORT_RC6_PROTOCOL == 1 || IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1 || IRMP_SUPPORT_SIEMENS_PROTOCOL == 1 #define IRMP_SUPPORT_MANCHESTER 1 #else #define IRMP_SUPPORT_MANCHESTER 0 #endif #define IRMP_KEY_REPETITION_LEN (uint16_t)(F_INTERRUPTS * 150.0e-3 + 0.5) // autodetect key repetition within 150 msec #define MIN_TOLERANCE_00 1.0 // -0% #define MAX_TOLERANCE_00 1.0 // +0% #define MIN_TOLERANCE_05 0.95 // -5% #define MAX_TOLERANCE_05 1.05 // +5% #define MIN_TOLERANCE_10 0.9 // -10% #define MAX_TOLERANCE_10 1.1 // +10% #define MIN_TOLERANCE_15 0.85 // -15% #define MAX_TOLERANCE_15 1.15 // +15% #define MIN_TOLERANCE_20 0.8 // -20% #define MAX_TOLERANCE_20 1.2 // +20% #define MIN_TOLERANCE_30 0.7 // -30% #define MAX_TOLERANCE_30 1.3 // +30% #define MIN_TOLERANCE_40 0.6 // -40% #define MAX_TOLERANCE_40 1.4 // +40% #define MIN_TOLERANCE_50 0.5 // -50% #define MAX_TOLERANCE_50 1.5 // +50% #define MIN_TOLERANCE_60 0.4 // -60% #define MAX_TOLERANCE_60 1.6 // +60% #define MIN_TOLERANCE_70 0.3 // -70% #define MAX_TOLERANCE_70 1.7 // +70% #define SIRCS_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIRCS_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIRCS_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define SIRCS_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_START_BIT_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) // only 5% to avoid conflict with RC6 #define SIRCS_1_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_1_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIRCS_1_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_1_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIRCS_0_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_0_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIRCS_0_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_0_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIRCS_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIRCS_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIRCS_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIRCS_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define NEC_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_START_BIT_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define NEC_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_START_BIT_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define NEC_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_START_BIT_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define NEC_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_START_BIT_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define NEC_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_REPEAT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define NEC_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_REPEAT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define NEC_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define NEC_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define NEC_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define NEC_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define NEC_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NEC_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define NEC_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NEC_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) // autodetect nec repetition frame within 50 msec: // NEC seems to send the first repetition frame after 40ms, further repetition frames after 100 ms #if 0 #define NEC_FRAME_REPEAT_PAUSE_LEN_MAX (uint16_t)(F_INTERRUPTS * NEC_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) #else #define NEC_FRAME_REPEAT_PAUSE_LEN_MAX (uint16_t)(F_INTERRUPTS * 100.0e-3 * MAX_TOLERANCE_20 + 0.5) #endif #define SAMSUNG_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SAMSUNG_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SAMSUNG_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SAMSUNG_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SAMSUNG_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNG_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define SAMSUNG_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNG_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define SAMSUNG_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * SAMSUNG_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNG_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * SAMSUNG_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define MATSUSHITA_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define MATSUSHITA_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define MATSUSHITA_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define MATSUSHITA_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define MATSUSHITA_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define MATSUSHITA_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define MATSUSHITA_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define MATSUSHITA_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define MATSUSHITA_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * MATSUSHITA_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define MATSUSHITA_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * MATSUSHITA_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define KASEIKYO_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KASEIKYO_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define KASEIKYO_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KASEIKYO_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define KASEIKYO_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_PULSE_TIME * MIN_TOLERANCE_50 + 0.5) - 1) #define KASEIKYO_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_PULSE_TIME * MAX_TOLERANCE_50 + 0.5) + 1) #define KASEIKYO_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define KASEIKYO_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define KASEIKYO_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * KASEIKYO_0_PAUSE_TIME * MIN_TOLERANCE_50 + 0.5) - 1) #define KASEIKYO_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * KASEIKYO_0_PAUSE_TIME * MAX_TOLERANCE_50 + 0.5) + 1) #define RECS80_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_START_BIT_PULSE_TIME * MIN_TOLERANCE_00 + 0.5) - 1) #define RECS80_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC5_START_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC5_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC5_START_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC5_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC5_START_BIT_LEN_MIN_2 ((uint8_t)(F_INTERRUPTS * 2 * RC5_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC5_START_BIT_LEN_MAX_2 ((uint8_t)(F_INTERRUPTS * 2 * RC5_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC5_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC5_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC5_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC5_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC5_BIT_LEN_MIN_2 ((uint8_t)(F_INTERRUPTS * 2 * RC5_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC5_BIT_LEN_MAX_2 ((uint8_t)(F_INTERRUPTS * 2 * RC5_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define DENON_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * DENON_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define DENON_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * DENON_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define DENON_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * DENON_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define DENON_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * DENON_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define DENON_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * DENON_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define DENON_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * DENON_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_TOGGLE_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_TOGGLE_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_TOGGLE_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_TOGGLE_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_BIT_TIME * MAX_TOLERANCE_30 + 0.5) + 1) // pulses: 300 - 700 #define RC6_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RC6_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) // pauses: 300 - 600 #define RC6_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RC6_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_BIT_PULSE_LEN_MIN_2 ((uint8_t)(F_INTERRUPTS * 2 * RC6_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_BIT_PULSE_LEN_MAX_2 ((uint8_t)(F_INTERRUPTS * 2 * RC6_BIT_TIME * MAX_TOLERANCE_30 + 0.5) + 1) // pulses: 600 - 1400 #define RC6_BIT_PAUSE_LEN_MIN_2 ((uint8_t)(F_INTERRUPTS * 2 * RC6_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) // pauses: 600 - 1200 #define RC6_BIT_PAUSE_LEN_MAX_2 ((uint8_t)(F_INTERRUPTS * 2 * RC6_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80EXT_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PULSE_TIME * MIN_TOLERANCE_00 + 0.5) - 1) #define RECS80EXT_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PULSE_TIME * MAX_TOLERANCE_00 + 0.5) + 1) #define RECS80EXT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RECS80EXT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #define RECS80EXT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80EXT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80EXT_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80EXT_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80EXT_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RECS80EXT_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80EXT_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RECS80EXT_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define NUBERT_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_1_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_1_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_1_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_1_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_0_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_0_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_0_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_0_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NUBERT_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NUBERT_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT2_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT2_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT3_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT3_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX ((PAUSE_LEN)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) // value must be below IRMP_TIMEOUT #define BANG_OLUFSEN_START_BIT4_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT4_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_R_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_R_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_R_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_R_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_TRAILER_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * BANG_OLUFSEN_TRAILER_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define GRUNDIG_OR_NOKIA_START_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_BIT_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define GRUNDIG_OR_NOKIA_START_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_BIT_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define GRUNDIG_OR_NOKIA_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_BIT_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define GRUNDIG_OR_NOKIA_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_BIT_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define GRUNDIG_OR_NOKIA_BIT_LEN_MIN_2 ((uint8_t)(F_INTERRUPTS * 2 * GRUNDIG_OR_NOKIA_BIT_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define GRUNDIG_OR_NOKIA_BIT_LEN_MAX_2 ((uint8_t)(F_INTERRUPTS * 2 * GRUNDIG_OR_NOKIA_BIT_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_PRE_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) + 1) #define GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * GRUNDIG_OR_NOKIA_PRE_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define SIEMENS_START_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIEMENS_BIT_TIME * 1 + 0.5) - 1) #define SIEMENS_START_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIEMENS_BIT_TIME * 1 + 0.5) + 1) #define SIEMENS_BIT_LEN_MIN ((uint8_t)(F_INTERRUPTS * SIEMENS_BIT_TIME * 1 + 0.5) - 1) #define SIEMENS_BIT_LEN_MAX ((uint8_t)(F_INTERRUPTS * SIEMENS_BIT_TIME * 1 + 0.5) + 1) #define SIEMENS_BIT_LEN_MIN_2 ((uint8_t)(F_INTERRUPTS * 2 * SIEMENS_BIT_TIME * 1 + 0.5) - 1) #define SIEMENS_BIT_LEN_MAX_2 ((uint8_t)(F_INTERRUPTS * 2 * SIEMENS_BIT_TIME * 1 + 0.5) + 1) #define FDC_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define FDC_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define FDC_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define FDC_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define FDC_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define FDC_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_PULSE_TIME * MAX_TOLERANCE_50 + 0.5) + 1) #define FDC_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define FDC_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #if 0 #define FDC_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * FDC_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) // could be negative: 255 #else #define FDC_0_PAUSE_LEN_MIN (1) // simply use 1 #endif #define FDC_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * FDC_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RCCAR_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RCCAR_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RCCAR_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RCCAR_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RCCAR_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RCCAR_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RCCAR_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define RCCAR_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define RCCAR_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RCCAR_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define RCCAR_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RCCAR_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define JVC_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define JVC_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define JVC_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * (JVC_FRAME_REPEAT_PAUSE_TIME - IRMP_TIMEOUT_TIME) * MIN_TOLERANCE_40 + 0.5) - 1) // HACK! #define JVC_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * (JVC_FRAME_REPEAT_PAUSE_TIME - IRMP_TIMEOUT_TIME) * MAX_TOLERANCE_70 + 0.5) - 1) // HACK! #define JVC_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * JVC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define JVC_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * JVC_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define JVC_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * JVC_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define JVC_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * JVC_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define JVC_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * JVC_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define JVC_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * JVC_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) // autodetect JVC repetition frame within 50 msec: #define JVC_FRAME_REPEAT_PAUSE_LEN_MAX (uint16_t)(F_INTERRUPTS * JVC_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) #define NIKON_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_START_BIT_PAUSE_LEN_MIN ((uint16_t)(F_INTERRUPTS * NIKON_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_START_BIT_PAUSE_LEN_MAX ((uint16_t)(F_INTERRUPTS * NIKON_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_REPEAT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_REPEAT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_1_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_1_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_0_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * NIKON_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_0_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * NIKON_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_FRAME_REPEAT_PAUSE_LEN_MAX (uint16_t)(F_INTERRUPTS * NIKON_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) #define RUWIDO_START_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RUWIDO_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RUWIDO_START_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RUWIDO_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RUWIDO_START_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RUWIDO_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RUWIDO_START_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RUWIDO_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RUWIDO_BIT_PULSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RUWIDO_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RUWIDO_BIT_PULSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RUWIDO_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RUWIDO_BIT_PAUSE_LEN_MIN ((uint8_t)(F_INTERRUPTS * RUWIDO_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RUWIDO_BIT_PAUSE_LEN_MAX ((uint8_t)(F_INTERRUPTS * RUWIDO_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RUWIDO_BIT_PULSE_LEN_MIN_2 ((uint8_t)(F_INTERRUPTS * RUWIDO_BIT_PULSE_TIME_2 * MIN_TOLERANCE_10 + 0.5) - 1) #define RUWIDO_BIT_PULSE_LEN_MAX_2 ((uint8_t)(F_INTERRUPTS * RUWIDO_BIT_PULSE_TIME_2 * MAX_TOLERANCE_10 + 0.5) + 1) #define RUWIDO_BIT_PAUSE_LEN_MIN_2 ((uint8_t)(F_INTERRUPTS * RUWIDO_BIT_PAUSE_TIME_2 * MIN_TOLERANCE_10 + 0.5) - 1) #define RUWIDO_BIT_PAUSE_LEN_MAX_2 ((uint8_t)(F_INTERRUPTS * RUWIDO_BIT_PAUSE_TIME_2 * MAX_TOLERANCE_10 + 0.5) + 1) #define AUTO_FRAME_REPETITION_LEN (uint16_t)(F_INTERRUPTS * AUTO_FRAME_REPETITION_TIME + 0.5) // use uint16_t! #ifdef ANALYZE #define ANALYZE_PUTCHAR(a) { if (! silent) { putchar (a); } } #define ANALYZE_ONLY_NORMAL_PUTCHAR(a) { if (! silent && !verbose) { putchar (a); } } #define ANALYZE_PRINTF(...) { if (verbose) { printf (__VA_ARGS__); } } #define ANALYZE_NEWLINE() { if (verbose) { putchar ('\n'); } } static int silent; static int time_counter; static int verbose; #else #define ANALYZE_PUTCHAR(a) #define ANALYZE_ONLY_NORMAL_PUTCHAR(a) #define ANALYZE_PRINTF(...) #define ANALYZE_NEWLINE() #endif #if IRMP_LOGGING == 1 #define BAUD 9600L #include #ifdef UBRR0H #define UART0_UBRRH UBRR0H #define UART0_UBRRL UBRR0L #define UART0_UCSRA UCSR0A #define UART0_UCSRB UCSR0B #define UART0_UCSRC UCSR0C #define UART0_UDRE_BIT_VALUE (1< ENDBITS) { // if stop condition is true, output on uart uint16_t i; for (i = 0; i < STARTCYCLES; i++) { irmp_uart_putc ('0'); // the ignored starting zeros } for (i = 0; i < (buf_idx - ENDBITS + 20) / 8; i++) // transform bitset into uart chars { uint8_t d = buf[i]; uint8_t j; for (j = 0; j < 8; j++) { irmp_uart_putc ((d & 1) + '0'); d >>= 1; } } irmp_uart_putc ('\n'); buf_idx = 0; } } else { cnt = 0; } } } } #else #define irmp_log(val) #endif typedef struct { uint8_t protocol; // ir protocol uint8_t pulse_1_len_min; // minimum length of pulse with bit value 1 uint8_t pulse_1_len_max; // maximum length of pulse with bit value 1 uint8_t pause_1_len_min; // minimum length of pause with bit value 1 uint8_t pause_1_len_max; // maximum length of pause with bit value 1 uint8_t pulse_0_len_min; // minimum length of pulse with bit value 0 uint8_t pulse_0_len_max; // maximum length of pulse with bit value 0 uint8_t pause_0_len_min; // minimum length of pause with bit value 0 uint8_t pause_0_len_max; // maximum length of pause with bit value 0 uint8_t address_offset; // address offset uint8_t address_end; // end of address uint8_t command_offset; // command offset uint8_t command_end; // end of command uint8_t complete_len; // complete length of frame uint8_t stop_bit; // flag: frame has stop bit uint8_t lsb_first; // flag: LSB first uint8_t flags; // some flags } IRMP_PARAMETER; #if IRMP_SUPPORT_SIRCS_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER sircs_param = { IRMP_SIRCS_PROTOCOL, // protocol: ir protocol SIRCS_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 SIRCS_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 SIRCS_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 SIRCS_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 SIRCS_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 SIRCS_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 SIRCS_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 SIRCS_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 SIRCS_ADDRESS_OFFSET, // address_offset: address offset SIRCS_ADDRESS_OFFSET + SIRCS_ADDRESS_LEN, // address_end: end of address SIRCS_COMMAND_OFFSET, // command_offset: command offset SIRCS_COMMAND_OFFSET + SIRCS_COMMAND_LEN, // command_end: end of command SIRCS_COMPLETE_DATA_LEN, // complete_len: complete length of frame SIRCS_STOP_BIT, // stop_bit: flag: frame has stop bit SIRCS_LSB, // lsb_first: flag: LSB first SIRCS_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_NEC_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER nec_param = { IRMP_NEC_PROTOCOL, // protocol: ir protocol NEC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NEC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NEC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NEC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NEC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NEC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NEC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NEC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 NEC_ADDRESS_OFFSET, // address_offset: address offset NEC_ADDRESS_OFFSET + NEC_ADDRESS_LEN, // address_end: end of address NEC_COMMAND_OFFSET, // command_offset: command offset NEC_COMMAND_OFFSET + NEC_COMMAND_LEN, // command_end: end of command NEC_COMPLETE_DATA_LEN, // complete_len: complete length of frame NEC_STOP_BIT, // stop_bit: flag: frame has stop bit NEC_LSB, // lsb_first: flag: LSB first NEC_FLAGS // flags: some flags }; static PROGMEM IRMP_PARAMETER nec_rep_param = { IRMP_NEC_PROTOCOL, // protocol: ir protocol NEC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NEC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NEC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NEC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NEC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NEC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NEC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NEC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 0, // address_offset: address offset 0, // address_end: end of address 0, // command_offset: command offset 0, // command_end: end of command 0, // complete_len: complete length of frame NEC_STOP_BIT, // stop_bit: flag: frame has stop bit NEC_LSB, // lsb_first: flag: LSB first NEC_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER samsung_param = { IRMP_SAMSUNG_PROTOCOL, // protocol: ir protocol SAMSUNG_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 SAMSUNG_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 SAMSUNG_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 SAMSUNG_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 SAMSUNG_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 SAMSUNG_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 SAMSUNG_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 SAMSUNG_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 SAMSUNG_ADDRESS_OFFSET, // address_offset: address offset SAMSUNG_ADDRESS_OFFSET + SAMSUNG_ADDRESS_LEN, // address_end: end of address SAMSUNG_COMMAND_OFFSET, // command_offset: command offset SAMSUNG_COMMAND_OFFSET + SAMSUNG_COMMAND_LEN, // command_end: end of command SAMSUNG_COMPLETE_DATA_LEN, // complete_len: complete length of frame SAMSUNG_STOP_BIT, // stop_bit: flag: frame has stop bit SAMSUNG_LSB, // lsb_first: flag: LSB first SAMSUNG_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER matsushita_param = { IRMP_MATSUSHITA_PROTOCOL, // protocol: ir protocol MATSUSHITA_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 MATSUSHITA_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 MATSUSHITA_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 MATSUSHITA_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 MATSUSHITA_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 MATSUSHITA_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 MATSUSHITA_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 MATSUSHITA_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 MATSUSHITA_ADDRESS_OFFSET, // address_offset: address offset MATSUSHITA_ADDRESS_OFFSET + MATSUSHITA_ADDRESS_LEN, // address_end: end of address MATSUSHITA_COMMAND_OFFSET, // command_offset: command offset MATSUSHITA_COMMAND_OFFSET + MATSUSHITA_COMMAND_LEN, // command_end: end of command MATSUSHITA_COMPLETE_DATA_LEN, // complete_len: complete length of frame MATSUSHITA_STOP_BIT, // stop_bit: flag: frame has stop bit MATSUSHITA_LSB, // lsb_first: flag: LSB first MATSUSHITA_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER kaseikyo_param = { IRMP_KASEIKYO_PROTOCOL, // protocol: ir protocol KASEIKYO_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 KASEIKYO_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 KASEIKYO_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 KASEIKYO_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 KASEIKYO_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 KASEIKYO_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 KASEIKYO_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 KASEIKYO_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 KASEIKYO_ADDRESS_OFFSET, // address_offset: address offset KASEIKYO_ADDRESS_OFFSET + KASEIKYO_ADDRESS_LEN, // address_end: end of address KASEIKYO_COMMAND_OFFSET, // command_offset: command offset KASEIKYO_COMMAND_OFFSET + KASEIKYO_COMMAND_LEN, // command_end: end of command KASEIKYO_COMPLETE_DATA_LEN, // complete_len: complete length of frame KASEIKYO_STOP_BIT, // stop_bit: flag: frame has stop bit KASEIKYO_LSB, // lsb_first: flag: LSB first KASEIKYO_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RECS80_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER recs80_param = { IRMP_RECS80_PROTOCOL, // protocol: ir protocol RECS80_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 RECS80_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 RECS80_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 RECS80_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 RECS80_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 RECS80_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 RECS80_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 RECS80_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 RECS80_ADDRESS_OFFSET, // address_offset: address offset RECS80_ADDRESS_OFFSET + RECS80_ADDRESS_LEN, // address_end: end of address RECS80_COMMAND_OFFSET, // command_offset: command offset RECS80_COMMAND_OFFSET + RECS80_COMMAND_LEN, // command_end: end of command RECS80_COMPLETE_DATA_LEN, // complete_len: complete length of frame RECS80_STOP_BIT, // stop_bit: flag: frame has stop bit RECS80_LSB, // lsb_first: flag: LSB first RECS80_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER rc5_param = { IRMP_RC5_PROTOCOL, // protocol: ir protocol RC5_BIT_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse RC5_BIT_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse RC5_BIT_LEN_MIN, // pause_1_len_min: here: minimum length of short pause RC5_BIT_LEN_MAX, // pause_1_len_max: here: maximum length of short pause RC5_BIT_LEN_MIN_2, // pulse_0_len_min: here: minimum length of long pulse RC5_BIT_LEN_MAX_2, // pulse_0_len_max: here: maximum length of long pulse RC5_BIT_LEN_MIN_2, // pause_0_len_min: here: minimum length of long pause RC5_BIT_LEN_MAX_2, // pause_0_len_max: here: maximum length of long pause RC5_ADDRESS_OFFSET, // address_offset: address offset RC5_ADDRESS_OFFSET + RC5_ADDRESS_LEN, // address_end: end of address RC5_COMMAND_OFFSET, // command_offset: command offset RC5_COMMAND_OFFSET + RC5_COMMAND_LEN, // command_end: end of command RC5_COMPLETE_DATA_LEN, // complete_len: complete length of frame RC5_STOP_BIT, // stop_bit: flag: frame has stop bit RC5_LSB, // lsb_first: flag: LSB first RC5_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_DENON_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER denon_param = { IRMP_DENON_PROTOCOL, // protocol: ir protocol DENON_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 DENON_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 DENON_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 DENON_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 DENON_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 DENON_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 DENON_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 DENON_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 DENON_ADDRESS_OFFSET, // address_offset: address offset DENON_ADDRESS_OFFSET + DENON_ADDRESS_LEN, // address_end: end of address DENON_COMMAND_OFFSET, // command_offset: command offset DENON_COMMAND_OFFSET + DENON_COMMAND_LEN, // command_end: end of command DENON_COMPLETE_DATA_LEN, // complete_len: complete length of frame DENON_STOP_BIT, // stop_bit: flag: frame has stop bit DENON_LSB, // lsb_first: flag: LSB first DENON_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RC6_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER rc6_param = { IRMP_RC6_PROTOCOL, // protocol: ir protocol RC6_BIT_PULSE_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse RC6_BIT_PULSE_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse RC6_BIT_PAUSE_LEN_MIN, // pause_1_len_min: here: minimum length of short pause RC6_BIT_PAUSE_LEN_MAX, // pause_1_len_max: here: maximum length of short pause RC6_BIT_PULSE_LEN_MIN_2, // pulse_0_len_min: here: minimum length of long pulse RC6_BIT_PULSE_LEN_MAX_2, // pulse_0_len_max: here: maximum length of long pulse RC6_BIT_PAUSE_LEN_MIN_2, // pause_0_len_min: here: minimum length of long pause RC6_BIT_PAUSE_LEN_MAX_2, // pause_0_len_max: here: maximum length of long pause RC6_ADDRESS_OFFSET, // address_offset: address offset RC6_ADDRESS_OFFSET + RC6_ADDRESS_LEN, // address_end: end of address RC6_COMMAND_OFFSET, // command_offset: command offset RC6_COMMAND_OFFSET + RC6_COMMAND_LEN, // command_end: end of command RC6_COMPLETE_DATA_LEN_SHORT, // complete_len: complete length of frame RC6_STOP_BIT, // stop_bit: flag: frame has stop bit RC6_LSB, // lsb_first: flag: LSB first RC6_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER recs80ext_param = { IRMP_RECS80EXT_PROTOCOL, // protocol: ir protocol RECS80EXT_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 RECS80EXT_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 RECS80EXT_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 RECS80EXT_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 RECS80EXT_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 RECS80EXT_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 RECS80EXT_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 RECS80EXT_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 RECS80EXT_ADDRESS_OFFSET, // address_offset: address offset RECS80EXT_ADDRESS_OFFSET + RECS80EXT_ADDRESS_LEN, // address_end: end of address RECS80EXT_COMMAND_OFFSET, // command_offset: command offset RECS80EXT_COMMAND_OFFSET + RECS80EXT_COMMAND_LEN, // command_end: end of command RECS80EXT_COMPLETE_DATA_LEN, // complete_len: complete length of frame RECS80EXT_STOP_BIT, // stop_bit: flag: frame has stop bit RECS80EXT_LSB, // lsb_first: flag: LSB first RECS80EXT_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_NUBERT_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER nubert_param = { IRMP_NUBERT_PROTOCOL, // protocol: ir protocol NUBERT_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NUBERT_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NUBERT_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NUBERT_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NUBERT_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NUBERT_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NUBERT_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NUBERT_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 NUBERT_ADDRESS_OFFSET, // address_offset: address offset NUBERT_ADDRESS_OFFSET + NUBERT_ADDRESS_LEN, // address_end: end of address NUBERT_COMMAND_OFFSET, // command_offset: command offset NUBERT_COMMAND_OFFSET + NUBERT_COMMAND_LEN, // command_end: end of command NUBERT_COMPLETE_DATA_LEN, // complete_len: complete length of frame NUBERT_STOP_BIT, // stop_bit: flag: frame has stop bit NUBERT_LSB, // lsb_first: flag: LSB first NUBERT_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER bang_olufsen_param = { IRMP_BANG_OLUFSEN_PROTOCOL, // protocol: ir protocol BANG_OLUFSEN_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 BANG_OLUFSEN_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 BANG_OLUFSEN_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 BANG_OLUFSEN_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 BANG_OLUFSEN_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 BANG_OLUFSEN_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 BANG_OLUFSEN_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 BANG_OLUFSEN_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 BANG_OLUFSEN_ADDRESS_OFFSET, // address_offset: address offset BANG_OLUFSEN_ADDRESS_OFFSET + BANG_OLUFSEN_ADDRESS_LEN, // address_end: end of address BANG_OLUFSEN_COMMAND_OFFSET, // command_offset: command offset BANG_OLUFSEN_COMMAND_OFFSET + BANG_OLUFSEN_COMMAND_LEN, // command_end: end of command BANG_OLUFSEN_COMPLETE_DATA_LEN, // complete_len: complete length of frame BANG_OLUFSEN_STOP_BIT, // stop_bit: flag: frame has stop bit BANG_OLUFSEN_LSB, // lsb_first: flag: LSB first BANG_OLUFSEN_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER grundig_param = { IRMP_GRUNDIG_PROTOCOL, // protocol: ir protocol GRUNDIG_OR_NOKIA_BIT_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse GRUNDIG_OR_NOKIA_BIT_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse GRUNDIG_OR_NOKIA_BIT_LEN_MIN, // pause_1_len_min: here: minimum length of short pause GRUNDIG_OR_NOKIA_BIT_LEN_MAX, // pause_1_len_max: here: maximum length of short pause GRUNDIG_OR_NOKIA_BIT_LEN_MIN_2, // pulse_0_len_min: here: minimum length of long pulse GRUNDIG_OR_NOKIA_BIT_LEN_MAX_2, // pulse_0_len_max: here: maximum length of long pulse GRUNDIG_OR_NOKIA_BIT_LEN_MIN_2, // pause_0_len_min: here: minimum length of long pause GRUNDIG_OR_NOKIA_BIT_LEN_MAX_2, // pause_0_len_max: here: maximum length of long pause GRUNDIG_ADDRESS_OFFSET, // address_offset: address offset GRUNDIG_ADDRESS_OFFSET + GRUNDIG_ADDRESS_LEN, // address_end: end of address GRUNDIG_COMMAND_OFFSET, // command_offset: command offset GRUNDIG_COMMAND_OFFSET + GRUNDIG_COMMAND_LEN + 1, // command_end: end of command (USE 1 bit MORE to STORE NOKIA DATA!) NOKIA_COMPLETE_DATA_LEN, // complete_len: complete length of frame, here: NOKIA instead of GRUNDIG! GRUNDIG_OR_NOKIA_STOP_BIT, // stop_bit: flag: frame has stop bit GRUNDIG_OR_NOKIA_LSB, // lsb_first: flag: LSB first GRUNDIG_OR_NOKIA_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_SIEMENS_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER siemens_param = { IRMP_SIEMENS_PROTOCOL, // protocol: ir protocol SIEMENS_BIT_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse SIEMENS_BIT_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse SIEMENS_BIT_LEN_MIN, // pause_1_len_min: here: minimum length of short pause SIEMENS_BIT_LEN_MAX, // pause_1_len_max: here: maximum length of short pause SIEMENS_BIT_LEN_MIN_2, // pulse_0_len_min: here: minimum length of long pulse SIEMENS_BIT_LEN_MAX_2, // pulse_0_len_max: here: maximum length of long pulse SIEMENS_BIT_LEN_MIN_2, // pause_0_len_min: here: minimum length of long pause SIEMENS_BIT_LEN_MAX_2, // pause_0_len_max: here: maximum length of long pause SIEMENS_ADDRESS_OFFSET, // address_offset: address offset SIEMENS_ADDRESS_OFFSET + SIEMENS_ADDRESS_LEN, // address_end: end of address SIEMENS_COMMAND_OFFSET, // command_offset: command offset SIEMENS_COMMAND_OFFSET + SIEMENS_COMMAND_LEN, // command_end: end of command SIEMENS_COMPLETE_DATA_LEN, // complete_len: complete length of frame SIEMENS_STOP_BIT, // stop_bit: flag: frame has stop bit SIEMENS_LSB, // lsb_first: flag: LSB first SIEMENS_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_FDC_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER fdc_param = { IRMP_FDC_PROTOCOL, // protocol: ir protocol FDC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 FDC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 FDC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 FDC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 FDC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 FDC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 FDC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 FDC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 FDC_ADDRESS_OFFSET, // address_offset: address offset FDC_ADDRESS_OFFSET + FDC_ADDRESS_LEN, // address_end: end of address FDC_COMMAND_OFFSET, // command_offset: command offset FDC_COMMAND_OFFSET + FDC_COMMAND_LEN, // command_end: end of command FDC_COMPLETE_DATA_LEN, // complete_len: complete length of frame FDC_STOP_BIT, // stop_bit: flag: frame has stop bit FDC_LSB, // lsb_first: flag: LSB first FDC_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RCCAR_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER rccar_param = { IRMP_RCCAR_PROTOCOL, // protocol: ir protocol RCCAR_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 RCCAR_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 RCCAR_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 RCCAR_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 RCCAR_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 RCCAR_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 RCCAR_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 RCCAR_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 RCCAR_ADDRESS_OFFSET, // address_offset: address offset RCCAR_ADDRESS_OFFSET + RCCAR_ADDRESS_LEN, // address_end: end of address RCCAR_COMMAND_OFFSET, // command_offset: command offset RCCAR_COMMAND_OFFSET + RCCAR_COMMAND_LEN, // command_end: end of command RCCAR_COMPLETE_DATA_LEN, // complete_len: complete length of frame RCCAR_STOP_BIT, // stop_bit: flag: frame has stop bit RCCAR_LSB, // lsb_first: flag: LSB first RCCAR_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_NIKON_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER nikon_param = { IRMP_NIKON_PROTOCOL, // protocol: ir protocol NIKON_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NIKON_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NIKON_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NIKON_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NIKON_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NIKON_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NIKON_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NIKON_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 NIKON_ADDRESS_OFFSET, // address_offset: address offset NIKON_ADDRESS_OFFSET + NIKON_ADDRESS_LEN, // address_end: end of address NIKON_COMMAND_OFFSET, // command_offset: command offset NIKON_COMMAND_OFFSET + NIKON_COMMAND_LEN, // command_end: end of command NIKON_COMPLETE_DATA_LEN, // complete_len: complete length of frame NIKON_STOP_BIT, // stop_bit: flag: frame has stop bit NIKON_LSB, // lsb_first: flag: LSB first NIKON_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RUWIDO_PROTOCOL == 1 static PROGMEM IRMP_PARAMETER ruwido_param = { IRMP_RUWIDO_PROTOCOL, // protocol: ir protocol RUWIDO_BIT_PULSE_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse RUWIDO_BIT_PULSE_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse RUWIDO_BIT_PAUSE_LEN_MIN, // pause_1_len_min: here: minimum length of short pause RUWIDO_BIT_PAUSE_LEN_MAX, // pause_1_len_max: here: maximum length of short pause RUWIDO_BIT_PULSE_LEN_MIN_2, // pulse_0_len_min: here: minimum length of long pulse RUWIDO_BIT_PULSE_LEN_MAX_2, // pulse_0_len_max: here: maximum length of long pulse RUWIDO_BIT_PAUSE_LEN_MIN_2, // pause_0_len_min: here: minimum length of long pause RUWIDO_BIT_PAUSE_LEN_MAX_2, // pause_0_len_max: here: maximum length of long pause RUWIDO_ADDRESS_OFFSET, // address_offset: address offset RUWIDO_ADDRESS_OFFSET + RUWIDO_ADDRESS_LEN, // address_end: end of address RUWIDO_COMMAND_OFFSET, // command_offset: command offset RUWIDO_COMMAND_OFFSET + RUWIDO_COMMAND_LEN, // command_end: end of command RUWIDO_COMPLETE_DATA_LEN, // complete_len: complete length of frame RUWIDO_STOP_BIT, // stop_bit: flag: frame has stop bit RUWIDO_LSB, // lsb_first: flag: LSB first RUWIDO_FLAGS // flags: some flags }; #endif static uint8_t irmp_bit; // current bit position static IRMP_PARAMETER irmp_param; #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) static IRMP_PARAMETER irmp_param2; #endif static volatile uint8_t irmp_ir_detected; static volatile uint8_t irmp_protocol; static volatile uint16_t irmp_address; static volatile uint16_t irmp_command; static volatile uint16_t irmp_id; // only used for SAMSUNG protocol static volatile uint8_t irmp_flags; #ifdef ANALYZE static uint8_t IRMP_PIN; #endif /*--------------------------------------------------------------------------------------------------------------------------------------------------- * Initialize IRMP decoder * @details Configures IRMP input pin *--------------------------------------------------------------------------------------------------------------------------------------------------- */ #ifndef ANALYZE void irmp_init (void) { #ifndef PIC_CCS_COMPILER IRMP_PORT &= ~(1<> 8) == (~irmp_command & 0x00FF)) { irmp_command &= 0xff; irmp_command |= irmp_id << 8; rtc = TRUE; } break; #endif #if IRMP_SUPPORT_NEC_PROTOCOL == 1 case IRMP_NEC_PROTOCOL: if ((irmp_command >> 8) == (~irmp_command & 0x00FF)) { irmp_command &= 0xff; rtc = TRUE; } else if (irmp_address == 0x87EE) { ANALYZE_PRINTF ("Switching to APPLE protocol\n"); irmp_protocol = IRMP_APPLE_PROTOCOL; irmp_address = (irmp_command & 0xFF00) >> 8; irmp_command &= 0x00FF; rtc = TRUE; } break; #endif #if IRMP_SUPPORT_SIEMENS_PROTOCOL == 1 case IRMP_SIEMENS_PROTOCOL: if (((irmp_command >> 1) & 0x0001) == (~irmp_command & 0x0001)) { irmp_command >>= 1; rtc = TRUE; } break; #endif #if IRMP_SUPPORT_RCCAR_PROTOCOL == 1 case IRMP_RCCAR_PROTOCOL: // frame in irmp_data: // Bit 12 11 10 9 8 7 6 5 4 3 2 1 0 // V D7 D6 D5 D4 D3 D2 D1 D0 A1 A0 C1 C0 // 10 9 8 7 6 5 4 3 2 1 0 irmp_address = (irmp_command & 0x000C) >> 2; // addr: 0 0 0 0 0 0 0 0 0 A1 A0 irmp_command = ((irmp_command & 0x1000) >> 2) | // V-Bit: V 0 0 0 0 0 0 0 0 0 0 ((irmp_command & 0x0003) << 8) | // C-Bits: 0 C1 C0 0 0 0 0 0 0 0 0 ((irmp_command & 0x0FF0) >> 4); // D-Bits: D7 D6 D5 D4 D3 D2 D1 D0 rtc = TRUE; // Summe: V C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 break; #endif default: rtc = TRUE; } if (rtc) { irmp_data_p->protocol = irmp_protocol; irmp_data_p->address = irmp_address; irmp_data_p->command = irmp_command; irmp_data_p->flags = irmp_flags; irmp_command = 0; irmp_address = 0; irmp_flags = 0; } irmp_ir_detected = FALSE; } return rtc; } // these statics must not be volatile, because they are only used by irmp_store_bit(), which is called by irmp_ISR() static uint16_t irmp_tmp_address; // ir address static uint16_t irmp_tmp_command; // ir command #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) static uint16_t irmp_tmp_address2; // ir address static uint16_t irmp_tmp_command2; // ir command #endif #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 static uint16_t irmp_tmp_id; // ir id (only SAMSUNG) #endif #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 static uint8_t xor_check[6]; // check kaseikyo "parity" bits #endif static uint8_t irmp_bit; // current bit position /*--------------------------------------------------------------------------------------------------------------------------------------------------- * store bit * @details store bit in temp address or temp command * @param value to store: 0 or 1 *--------------------------------------------------------------------------------------------------------------------------------------------------- */ // verhindert, dass irmp_store_bit() inline compiliert wird: // static void irmp_store_bit (uint8_t) __attribute__ ((noinline)); static void irmp_store_bit (uint8_t value) { if (irmp_bit >= irmp_param.address_offset && irmp_bit < irmp_param.address_end) { if (irmp_param.lsb_first) { irmp_tmp_address |= (((uint16_t) (value)) << (irmp_bit - irmp_param.address_offset)); // CV wants cast } else { irmp_tmp_address <<= 1; irmp_tmp_address |= value; } } else if (irmp_bit >= irmp_param.command_offset && irmp_bit < irmp_param.command_end) { if (irmp_param.lsb_first) { irmp_tmp_command |= (((uint16_t) (value)) << (irmp_bit - irmp_param.command_offset)); // CV wants cast } else { irmp_tmp_command <<= 1; irmp_tmp_command |= value; } } #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_SAMSUNG_PROTOCOL && irmp_bit >= SAMSUNG_ID_OFFSET && irmp_bit < SAMSUNG_ID_OFFSET + SAMSUNG_ID_LEN) { irmp_tmp_id |= (((uint16_t) (value)) << (irmp_bit - SAMSUNG_ID_OFFSET)); // store with LSB first } #endif #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL && irmp_bit >= 20 && irmp_bit < 24) { irmp_tmp_command |= (((uint16_t) (value)) << (irmp_bit - 8)); // store 4 system bits in upper nibble with LSB first } if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL && irmp_bit < KASEIKYO_COMPLETE_DATA_LEN) { if (value) { xor_check[irmp_bit / 8] |= 1 << (irmp_bit % 8); } else { xor_check[irmp_bit / 8] &= ~(1 << (irmp_bit % 8)); } } #endif irmp_bit++; } /*--------------------------------------------------------------------------------------------------------------------------------------------------- * store bit * @details store bit in temp address or temp command * @param value to store: 0 or 1 *--------------------------------------------------------------------------------------------------------------------------------------------------- */ #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) static void irmp_store_bit2 (uint8_t value) { uint8_t irmp_bit2; if (irmp_param.protocol) { irmp_bit2 = irmp_bit - 2; } else { irmp_bit2 = irmp_bit - 1; } if (irmp_bit2 >= irmp_param2.address_offset && irmp_bit2 < irmp_param2.address_end) { irmp_tmp_address2 |= (((uint16_t) (value)) << (irmp_bit2 - irmp_param2.address_offset)); // CV wants cast } else if (irmp_bit2 >= irmp_param2.command_offset && irmp_bit2 < irmp_param2.command_end) { irmp_tmp_command2 |= (((uint16_t) (value)) << (irmp_bit2 - irmp_param2.command_offset)); // CV wants cast } } #endif // IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) /*--------------------------------------------------------------------------------------------------------------------------------------------------- * ISR routine * @details ISR routine, called 10000 times per second *--------------------------------------------------------------------------------------------------------------------------------------------------- */ uint8_t irmp_ISR (void) { static uint8_t irmp_start_bit_detected; // flag: start bit detected static uint8_t wait_for_space; // flag: wait for data bit space static uint8_t wait_for_start_space; // flag: wait for start bit space static uint8_t irmp_pulse_time; // count bit time for pulse static PAUSE_LEN irmp_pause_time; // count bit time for pause static uint16_t last_irmp_address = 0xFFFF; // save last irmp address to recognize key repetition static uint16_t last_irmp_command = 0xFFFF; // save last irmp command to recognize key repetition static uint16_t repetition_len; // SIRCS repeats frame 2-5 times with 45 ms pause static uint8_t repetition_frame_number; #if IRMP_SUPPORT_DENON_PROTOCOL == 1 static uint16_t last_irmp_denon_command; // save last irmp command to recognize DENON frame repetition #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 static uint8_t rc5_cmd_bit6; // bit 6 of RC5 command is the inverted 2nd start bit #endif #if IRMP_SUPPORT_MANCHESTER == 1 static PAUSE_LEN last_pause; // last pause value #endif #if IRMP_SUPPORT_MANCHESTER == 1 || IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 static uint8_t last_value; // last bit value #endif uint8_t irmp_input; // input value #ifdef ANALYZE time_counter++; #endif irmp_input = input(IRMP_PIN); irmp_log(irmp_input); // log ir signal, if IRMP_LOGGING defined if (! irmp_ir_detected) // ir code already detected? { // no... if (! irmp_start_bit_detected) // start bit detected? { // no... if (! irmp_input) // receiving burst? { // yes... #ifdef ANALYZE if (! irmp_pulse_time) { ANALYZE_PRINTF("%8d [starting pulse]\n", time_counter); } #endif irmp_pulse_time++; // increment counter } else { // no... if (irmp_pulse_time) // it's dark.... { // set flags for counting the time of darkness... irmp_start_bit_detected = 1; wait_for_start_space = 1; wait_for_space = 0; irmp_tmp_command = 0; irmp_tmp_address = 0; #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) irmp_tmp_command2 = 0; irmp_tmp_address2 = 0; #endif irmp_bit = 0xff; irmp_pause_time = 1; // 1st pause: set to 1, not to 0! #if IRMP_SUPPORT_RC5_PROTOCOL == 1 rc5_cmd_bit6 = 0; // fm 2010-03-07: bugfix: reset it after incomplete RC5 frame! #endif } else { if (repetition_len < 0xFFFF) // avoid overflow of counter { repetition_len++; } } } } else { if (wait_for_start_space) // we have received start bit... { // ...and are counting the time of darkness if (irmp_input) // still dark? { // yes irmp_pause_time++; // increment counter #if IRMP_SUPPORT_NIKON_PROTOCOL == 1 if (((irmp_pulse_time < NIKON_START_BIT_PULSE_LEN_MIN || irmp_pulse_time > NIKON_START_BIT_PULSE_LEN_MAX) && irmp_pause_time > IRMP_TIMEOUT_LEN) || irmp_pause_time > IRMP_TIMEOUT_NIKON_LEN) #else if (irmp_pause_time > IRMP_TIMEOUT_LEN) // timeout? #endif { // yes... #if IRMP_SUPPORT_JVC_PROTOCOL == 1 if (irmp_protocol == IRMP_JVC_PROTOCOL) // don't show eror if JVC protocol, irmp_pulse_time has been set below! { ; } else #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 { ANALYZE_PRINTF ("%8d error 1: pause after start bit pulse %d too long: %d\n", time_counter, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); } irmp_start_bit_detected = 0; // reset flags, let's wait for another start bit irmp_pulse_time = 0; irmp_pause_time = 0; } } else { // receiving first data pulse! IRMP_PARAMETER * irmp_param_p = (IRMP_PARAMETER *) 0; #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) irmp_param2.protocol = 0; #endif ANALYZE_PRINTF ("%8d [start-bit: pulse = %2d, pause = %2d]\n", time_counter, irmp_pulse_time, irmp_pause_time); #if IRMP_SUPPORT_SIRCS_PROTOCOL == 1 if (irmp_pulse_time >= SIRCS_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SIRCS_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= SIRCS_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SIRCS_START_BIT_PAUSE_LEN_MAX) { // it's SIRCS ANALYZE_PRINTF ("protocol = SIRCS, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", SIRCS_START_BIT_PULSE_LEN_MIN, SIRCS_START_BIT_PULSE_LEN_MAX, SIRCS_START_BIT_PAUSE_LEN_MIN, SIRCS_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) (IRMP_PARAMETER *) &sircs_param; } else #endif // IRMP_SUPPORT_SIRCS_PROTOCOL == 1 #if IRMP_SUPPORT_JVC_PROTOCOL == 1 if (irmp_protocol == IRMP_JVC_PROTOCOL && // last protocol was JVC, awaiting repeat frame irmp_pulse_time >= JVC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= JVC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= JVC_REPEAT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= JVC_REPEAT_START_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("protocol = NEC or JVC repeat frame, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", JVC_START_BIT_PULSE_LEN_MIN, JVC_START_BIT_PULSE_LEN_MAX, JVC_REPEAT_START_BIT_PAUSE_LEN_MIN, JVC_REPEAT_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &nec_param; // tricky: use nec parameters } else #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 #if IRMP_SUPPORT_NEC_PROTOCOL == 1 if (irmp_pulse_time >= NEC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NEC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NEC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NEC_START_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("protocol = NEC, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_START_BIT_PAUSE_LEN_MIN, NEC_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &nec_param; } else if (irmp_pulse_time >= NEC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NEC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NEC_REPEAT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NEC_REPEAT_START_BIT_PAUSE_LEN_MAX) { // it's NEC ANALYZE_PRINTF ("protocol = NEC (repetition frame), start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_REPEAT_START_BIT_PAUSE_LEN_MIN, NEC_REPEAT_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &nec_rep_param; } else #endif // IRMP_SUPPORT_NEC_PROTOCOL == 1 #if IRMP_SUPPORT_NIKON_PROTOCOL == 1 if (irmp_pulse_time >= NIKON_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NIKON_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NIKON_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NIKON_START_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("protocol = NIKON, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NIKON_START_BIT_PULSE_LEN_MIN, NIKON_START_BIT_PULSE_LEN_MAX, NIKON_START_BIT_PAUSE_LEN_MIN, NIKON_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &nikon_param; } else #endif // IRMP_SUPPORT_NIKON_PROTOCOL == 1 #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 if (irmp_pulse_time >= SAMSUNG_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= SAMSUNG_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_START_BIT_PAUSE_LEN_MAX) { // it's SAMSUNG ANALYZE_PRINTF ("protocol = SAMSUNG, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", SAMSUNG_START_BIT_PULSE_LEN_MIN, SAMSUNG_START_BIT_PULSE_LEN_MAX, SAMSUNG_START_BIT_PAUSE_LEN_MIN, SAMSUNG_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &samsung_param; } else #endif // IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 #if IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1 if (irmp_pulse_time >= MATSUSHITA_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= MATSUSHITA_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= MATSUSHITA_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= MATSUSHITA_START_BIT_PAUSE_LEN_MAX) { // it's MATSUSHITA ANALYZE_PRINTF ("protocol = MATSUSHITA, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", MATSUSHITA_START_BIT_PULSE_LEN_MIN, MATSUSHITA_START_BIT_PULSE_LEN_MAX, MATSUSHITA_START_BIT_PAUSE_LEN_MIN, MATSUSHITA_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &matsushita_param; } else #endif // IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1 #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 if (irmp_pulse_time >= KASEIKYO_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= KASEIKYO_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= KASEIKYO_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= KASEIKYO_START_BIT_PAUSE_LEN_MAX) { // it's KASEIKYO ANALYZE_PRINTF ("protocol = KASEIKYO, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", KASEIKYO_START_BIT_PULSE_LEN_MIN, KASEIKYO_START_BIT_PULSE_LEN_MAX, KASEIKYO_START_BIT_PAUSE_LEN_MIN, KASEIKYO_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &kaseikyo_param; } else #endif // IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 #if IRMP_SUPPORT_RECS80_PROTOCOL == 1 if (irmp_pulse_time >= RECS80_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RECS80_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RECS80_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RECS80_START_BIT_PAUSE_LEN_MAX) { // it's RECS80 ANALYZE_PRINTF ("protocol = RECS80, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RECS80_START_BIT_PULSE_LEN_MIN, RECS80_START_BIT_PULSE_LEN_MAX, RECS80_START_BIT_PAUSE_LEN_MIN, RECS80_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &recs80_param; } else #endif // IRMP_SUPPORT_RECS80_PROTOCOL == 1 #if IRMP_SUPPORT_RC5_PROTOCOL == 1 if (((irmp_pulse_time >= RC5_START_BIT_LEN_MIN && irmp_pulse_time <= RC5_START_BIT_LEN_MAX) || (irmp_pulse_time >= RC5_START_BIT_LEN_MIN_2 && irmp_pulse_time <= RC5_START_BIT_LEN_MAX_2)) && ((irmp_pause_time >= RC5_START_BIT_LEN_MIN && irmp_pause_time <= RC5_START_BIT_LEN_MAX) || (irmp_pause_time >= RC5_START_BIT_LEN_MIN_2 && irmp_pause_time <= RC5_START_BIT_LEN_MAX_2))) { // it's RC5 #if IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_pulse_time >= FDC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= FDC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= FDC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= FDC_START_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("protocol = RC5 or FDC\n"); ANALYZE_PRINTF ("FDC start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", FDC_START_BIT_PULSE_LEN_MIN, FDC_START_BIT_PULSE_LEN_MAX, FDC_START_BIT_PAUSE_LEN_MIN, FDC_START_BIT_PAUSE_LEN_MAX); ANALYZE_PRINTF ("RC5 start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX); memcpy_P (&irmp_param2, &fdc_param, sizeof (IRMP_PARAMETER)); } else #endif // IRMP_SUPPORT_FDC_PROTOCOL == 1 #if IRMP_SUPPORT_RCCAR_PROTOCOL == 1 if (irmp_pulse_time >= RCCAR_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RCCAR_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_START_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("protocol = RC5 or RCCAR\n"); ANALYZE_PRINTF ("RCCAR start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RCCAR_START_BIT_PULSE_LEN_MIN, RCCAR_START_BIT_PULSE_LEN_MAX, RCCAR_START_BIT_PAUSE_LEN_MIN, RCCAR_START_BIT_PAUSE_LEN_MAX); ANALYZE_PRINTF ("RC5 start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX); memcpy_P (&irmp_param2, &rccar_param, sizeof (IRMP_PARAMETER)); } else #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 { ANALYZE_PRINTF ("protocol = RC5, start bit timings: pulse: %3d - %3d, pause: %3d - %3d or pulse: %3d - %3d, pause: %3d - %3d\n", RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN_2, RC5_START_BIT_LEN_MAX_2, RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN_2, RC5_START_BIT_LEN_MAX_2); } irmp_param_p = (IRMP_PARAMETER *) &rc5_param; last_pause = irmp_pause_time; if ((irmp_pulse_time > RC5_START_BIT_LEN_MAX && irmp_pulse_time <= RC5_START_BIT_LEN_MAX_2) || (irmp_pause_time > RC5_START_BIT_LEN_MAX && irmp_pause_time <= RC5_START_BIT_LEN_MAX_2)) { last_value = 0; rc5_cmd_bit6 = 1<<6; } else { last_value = 1; } } else #endif // IRMP_SUPPORT_RC5_PROTOCOL == 1 #if IRMP_SUPPORT_DENON_PROTOCOL == 1 if ( (irmp_pulse_time >= DENON_PULSE_LEN_MIN && irmp_pulse_time <= DENON_PULSE_LEN_MAX) && ((irmp_pause_time >= DENON_1_PAUSE_LEN_MIN && irmp_pause_time <= DENON_1_PAUSE_LEN_MAX) || (irmp_pause_time >= DENON_0_PAUSE_LEN_MIN && irmp_pause_time <= DENON_0_PAUSE_LEN_MAX))) { // it's DENON ANALYZE_PRINTF ("protocol = DENON, start bit timings: pulse: %3d - %3d, pause: %3d - %3d or %3d - %3d\n", DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX, DENON_1_PAUSE_LEN_MIN, DENON_1_PAUSE_LEN_MAX, DENON_0_PAUSE_LEN_MIN, DENON_0_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &denon_param; } else #endif // IRMP_SUPPORT_DENON_PROTOCOL == 1 #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_pulse_time >= RC6_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RC6_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RC6_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RC6_START_BIT_PAUSE_LEN_MAX) { // it's RC6 ANALYZE_PRINTF ("protocol = RC6, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RC6_START_BIT_PULSE_LEN_MIN, RC6_START_BIT_PULSE_LEN_MAX, RC6_START_BIT_PAUSE_LEN_MIN, RC6_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &rc6_param; last_pause = 0; last_value = 1; } else #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 #if IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1 if (irmp_pulse_time >= RECS80EXT_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RECS80EXT_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RECS80EXT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RECS80EXT_START_BIT_PAUSE_LEN_MAX) { // it's RECS80EXT ANALYZE_PRINTF ("protocol = RECS80EXT, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RECS80EXT_START_BIT_PULSE_LEN_MIN, RECS80EXT_START_BIT_PULSE_LEN_MAX, RECS80EXT_START_BIT_PAUSE_LEN_MIN, RECS80EXT_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &recs80ext_param; } else #endif // IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1 #if IRMP_SUPPORT_NUBERT_PROTOCOL == 1 if (irmp_pulse_time >= NUBERT_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NUBERT_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NUBERT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NUBERT_START_BIT_PAUSE_LEN_MAX) { // it's NUBERT ANALYZE_PRINTF ("protocol = NUBERT, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NUBERT_START_BIT_PULSE_LEN_MIN, NUBERT_START_BIT_PULSE_LEN_MAX, NUBERT_START_BIT_PAUSE_LEN_MIN, NUBERT_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &nubert_param; } else #endif // IRMP_SUPPORT_NUBERT_PROTOCOL == 1 #if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 if (irmp_pulse_time >= BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN && irmp_pulse_time <= BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX && irmp_pause_time >= BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX) { // it's BANG_OLUFSEN ANALYZE_PRINTF ("protocol = BANG_OLUFSEN\n"); ANALYZE_PRINTF ("start bit 1 timings: pulse: %3d - %3d, pause: %3d - %3d\n", BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX); ANALYZE_PRINTF ("start bit 2 timings: pulse: %3d - %3d, pause: %3d - %3d\n", BANG_OLUFSEN_START_BIT2_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MAX); ANALYZE_PRINTF ("start bit 3 timings: pulse: %3d - %3d, pause: %3d - %3d\n", BANG_OLUFSEN_START_BIT3_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX); ANALYZE_PRINTF ("start bit 4 timings: pulse: %3d - %3d, pause: %3d - %3d\n", BANG_OLUFSEN_START_BIT4_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &bang_olufsen_param; last_value = 0; } else #endif // IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 #if IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1 if (irmp_pulse_time >= GRUNDIG_OR_NOKIA_START_BIT_LEN_MIN && irmp_pulse_time <= GRUNDIG_OR_NOKIA_START_BIT_LEN_MAX && irmp_pause_time >= GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MIN && irmp_pause_time <= GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MAX) { // it's GRUNDIG ANALYZE_PRINTF ("protocol = GRUNDIG, pre bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", GRUNDIG_OR_NOKIA_START_BIT_LEN_MIN, GRUNDIG_OR_NOKIA_START_BIT_LEN_MAX, GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MIN, GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &grundig_param; last_pause = irmp_pause_time; last_value = 1; } else #endif // IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1 #if IRMP_SUPPORT_SIEMENS_PROTOCOL == 1 if (((irmp_pulse_time >= SIEMENS_START_BIT_LEN_MIN && irmp_pulse_time <= SIEMENS_START_BIT_LEN_MAX) || (irmp_pulse_time >= 2 * SIEMENS_START_BIT_LEN_MIN && irmp_pulse_time <= 2 * SIEMENS_START_BIT_LEN_MAX)) && ((irmp_pause_time >= SIEMENS_START_BIT_LEN_MIN && irmp_pause_time <= SIEMENS_START_BIT_LEN_MAX) || (irmp_pause_time >= 2 * SIEMENS_START_BIT_LEN_MIN && irmp_pause_time <= 2 * SIEMENS_START_BIT_LEN_MAX))) { // it's SIEMENS ANALYZE_PRINTF ("protocol = SIEMENS, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", SIEMENS_START_BIT_LEN_MIN, SIEMENS_START_BIT_LEN_MAX, SIEMENS_START_BIT_LEN_MIN, SIEMENS_START_BIT_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &siemens_param; last_pause = irmp_pause_time; last_value = 1; } else #endif // IRMP_SUPPORT_SIEMENS_PROTOCOL == 1 #if IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_pulse_time >= FDC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= FDC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= FDC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= FDC_START_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("protocol = FDC, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", FDC_START_BIT_PULSE_LEN_MIN, FDC_START_BIT_PULSE_LEN_MAX, FDC_START_BIT_PAUSE_LEN_MIN, FDC_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &fdc_param; } else #endif // IRMP_SUPPORT_FDC_PROTOCOL == 1 #if IRMP_SUPPORT_RCCAR_PROTOCOL == 1 if (irmp_pulse_time >= RCCAR_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RCCAR_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_START_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("protocol = RCCAR, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RCCAR_START_BIT_PULSE_LEN_MIN, RCCAR_START_BIT_PULSE_LEN_MAX, RCCAR_START_BIT_PAUSE_LEN_MIN, RCCAR_START_BIT_PAUSE_LEN_MAX); irmp_param_p = (IRMP_PARAMETER *) &rccar_param; } else #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 #if IRMP_SUPPORT_RUWIDO_PROTOCOL == 1 if ((irmp_pulse_time >= RUWIDO_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RUWIDO_START_BIT_PULSE_LEN_MAX) && (irmp_pause_time >= RUWIDO_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RUWIDO_START_BIT_PAUSE_LEN_MAX)) { // it's RUWIDO { ANALYZE_PRINTF ("protocol = RUWIDO, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RUWIDO_START_BIT_PULSE_LEN_MIN, RUWIDO_START_BIT_PULSE_LEN_MAX, RUWIDO_START_BIT_PAUSE_LEN_MIN, RUWIDO_START_BIT_PAUSE_LEN_MAX); } irmp_param_p = (IRMP_PARAMETER *) &ruwido_param; last_pause = irmp_pause_time; last_value = 1; } else #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 { ANALYZE_PRINTF ("protocol = UNKNOWN\n"); irmp_start_bit_detected = 0; // wait for another start bit... } if (irmp_start_bit_detected) { memcpy_P (&irmp_param, irmp_param_p, sizeof (IRMP_PARAMETER)); #ifdef ANALYZE if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) { ANALYZE_PRINTF ("pulse_1: %3d - %3d\n", irmp_param.pulse_1_len_min, irmp_param.pulse_1_len_max); ANALYZE_PRINTF ("pause_1: %3d - %3d\n", irmp_param.pause_1_len_min, irmp_param.pause_1_len_max); } else { ANALYZE_PRINTF ("pulse: %3d - %3d or %3d - %3d\n", irmp_param.pulse_1_len_min, irmp_param.pulse_1_len_max, irmp_param.pulse_0_len_max + 1, irmp_param.pulse_0_len_max); ANALYZE_PRINTF ("pause: %3d - %3d or %3d - %3d\n", irmp_param.pause_1_len_min, irmp_param.pause_1_len_max, irmp_param.pause_0_len_max + 1, 2 * irmp_param.pause_0_len_max); } #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) if (irmp_param2.protocol) { ANALYZE_PRINTF ("pulse_0: %3d - %3d\n", irmp_param2.pulse_0_len_min, irmp_param2.pulse_0_len_max); ANALYZE_PRINTF ("pause_0: %3d - %3d\n", irmp_param2.pause_0_len_min, irmp_param2.pause_0_len_max); ANALYZE_PRINTF ("pulse_1: %3d - %3d\n", irmp_param2.pulse_1_len_min, irmp_param2.pulse_1_len_max); ANALYZE_PRINTF ("pause_1: %3d - %3d\n", irmp_param2.pause_1_len_min, irmp_param2.pause_1_len_max); } #endif #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL) { ANALYZE_PRINTF ("pulse_toggle: %3d - %3d\n", RC6_TOGGLE_BIT_LEN_MIN, RC6_TOGGLE_BIT_LEN_MAX); } #endif if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) { ANALYZE_PRINTF ("pulse_0: %3d - %3d\n", irmp_param.pulse_0_len_min, irmp_param.pulse_0_len_max); ANALYZE_PRINTF ("pause_0: %3d - %3d\n", irmp_param.pause_0_len_min, irmp_param.pause_0_len_max); } #if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 if (irmp_param.protocol == IRMP_BANG_OLUFSEN_PROTOCOL) { ANALYZE_PRINTF ("pulse_r: %3d - %3d\n", irmp_param.pulse_0_len_min, irmp_param.pulse_0_len_max); ANALYZE_PRINTF ("pause_r: %3d - %3d\n", BANG_OLUFSEN_R_PAUSE_LEN_MIN, BANG_OLUFSEN_R_PAUSE_LEN_MAX); } #endif ANALYZE_PRINTF ("command_offset: %2d\n", irmp_param.command_offset); ANALYZE_PRINTF ("command_len: %3d\n", irmp_param.command_end - irmp_param.command_offset); ANALYZE_PRINTF ("complete_len: %3d\n", irmp_param.complete_len); ANALYZE_PRINTF ("stop_bit: %3d\n", irmp_param.stop_bit); #endif // ANALYZE } irmp_bit = 0; #if IRMP_SUPPORT_MANCHESTER == 1 if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER) && irmp_param.protocol != IRMP_RC6_PROTOCOL) // Manchester, but not RC6 { if (irmp_pause_time > irmp_param.pulse_1_len_max && irmp_pause_time <= irmp_param.pulse_0_len_max) { ANALYZE_PRINTF ("%8d [bit %2d: pulse = %3d, pause = %3d] ", time_counter, irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '0' : '1'); ANALYZE_NEWLINE (); irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 0 : 1); } else if (! last_value) // && irmp_pause_time >= irmp_param.pause_1_len_min && irmp_pause_time <= irmp_param.pause_1_len_max) { ANALYZE_PRINTF ("%8d [bit %2d: pulse = %3d, pause = %3d] ", time_counter, irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '1' : '0'); ANALYZE_NEWLINE (); irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0); } } else #endif // IRMP_SUPPORT_MANCHESTER == 1 #if IRMP_SUPPORT_DENON_PROTOCOL == 1 if (irmp_param.protocol == IRMP_DENON_PROTOCOL) { ANALYZE_PRINTF ("%8d [bit %2d: pulse = %3d, pause = %3d] ", time_counter, irmp_bit, irmp_pulse_time, irmp_pause_time); if (irmp_pause_time >= DENON_1_PAUSE_LEN_MIN && irmp_pause_time <= DENON_1_PAUSE_LEN_MAX) { // pause timings correct for "1"? ANALYZE_PUTCHAR ('1'); // yes, store 1 ANALYZE_NEWLINE (); irmp_store_bit (1); } else // if (irmp_pause_time >= DENON_0_PAUSE_LEN_MIN && irmp_pause_time <= DENON_0_PAUSE_LEN_MAX) { // pause timings correct for "0"? ANALYZE_PUTCHAR ('0'); // yes, store 0 ANALYZE_NEWLINE (); irmp_store_bit (0); } } else #endif // IRMP_SUPPORT_DENON_PROTOCOL == 1 { ; // else do nothing } irmp_pulse_time = 1; // set counter to 1, not 0 irmp_pause_time = 0; wait_for_start_space = 0; } } else if (wait_for_space) // the data section.... { // counting the time of darkness.... uint8_t got_light = FALSE; if (irmp_input) // still dark? { // yes... if (irmp_bit == irmp_param.complete_len && irmp_param.stop_bit == 1) { if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER) || (irmp_pulse_time >= irmp_param.pulse_0_len_min && irmp_pulse_time <= irmp_param.pulse_0_len_max)) { #ifdef ANALYZE if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) { ANALYZE_PRINTF ("stop bit detected\n"); } #endif irmp_param.stop_bit = 0; } else { ANALYZE_PRINTF ("stop bit timing wrong\n"); irmp_start_bit_detected = 0; // wait for another start bit... irmp_pulse_time = 0; irmp_pause_time = 0; } } else { irmp_pause_time++; // increment counter #if IRMP_SUPPORT_SIRCS_PROTOCOL == 1 if (irmp_param.protocol == IRMP_SIRCS_PROTOCOL && // Sony has a variable number of bits: irmp_pause_time > SIRCS_PAUSE_LEN_MAX && // minimum is 12 irmp_bit >= 12 - 1) // pause too long? { // yes, break and close this frame irmp_param.complete_len = irmp_bit + 1; // set new complete length got_light = TRUE; // this is a lie, but helps (generates stop bit) irmp_tmp_address |= (irmp_bit - SIRCS_MINIMUM_DATA_LEN + 1) << 8; // new: store number of additional bits in upper byte of address! irmp_param.command_end = irmp_param.command_offset + irmp_bit + 1; // correct command length irmp_pause_time = SIRCS_PAUSE_LEN_MAX - 1; // correct pause length } else #endif #if IRMP_SUPPORT_GRUNDIG_OR_NOKIA_PROTOCOL == 1 if (irmp_param.protocol == IRMP_GRUNDIG_PROTOCOL && !irmp_param.stop_bit) { if (irmp_pause_time > irmp_param.pause_0_len_max && irmp_bit >= GRUNDIG_COMPLETE_DATA_LEN - 2) { // special manchester decoder irmp_param.complete_len = GRUNDIG_COMPLETE_DATA_LEN; // correct complete len got_light = TRUE; // this is a lie, but generates a stop bit ;-) irmp_param.stop_bit = TRUE; // set flag } else if (irmp_bit >= GRUNDIG_COMPLETE_DATA_LEN) { ANALYZE_PRINTF ("Switching to NOKIA protocol\n"); irmp_param.protocol = IRMP_NOKIA_PROTOCOL; // change protocol irmp_param.address_offset = NOKIA_ADDRESS_OFFSET; irmp_param.address_end = NOKIA_ADDRESS_OFFSET + NOKIA_ADDRESS_LEN; irmp_param.command_offset = NOKIA_COMMAND_OFFSET; irmp_param.command_end = NOKIA_COMMAND_OFFSET + NOKIA_COMMAND_LEN; if (irmp_tmp_command & 0x300) { irmp_tmp_address = (irmp_tmp_command >> 8); irmp_tmp_command &= 0xFF; } } } else #endif #if IRMP_SUPPORT_MANCHESTER == 1 if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER) && irmp_pause_time > irmp_param.pause_0_len_max && irmp_bit >= irmp_param.complete_len - 2 && !irmp_param.stop_bit) { // special manchester decoder got_light = TRUE; // this is a lie, but generates a stop bit ;-) irmp_param.stop_bit = TRUE; // set flag } else #endif // IRMP_SUPPORT_MANCHESTER == 1 if (irmp_pause_time > IRMP_TIMEOUT_LEN) // timeout? { // yes... if (irmp_bit == irmp_param.complete_len - 1 && irmp_param.stop_bit == 0) { irmp_bit++; } #if IRMP_SUPPORT_JVC_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_NEC_PROTOCOL && (irmp_bit == 16 || irmp_bit == 17)) // it was a JVC stop bit { ANALYZE_PRINTF ("Switching to JVC protocol\n"); irmp_param.stop_bit = TRUE; // set flag irmp_param.protocol = IRMP_JVC_PROTOCOL; // switch protocol irmp_param.complete_len = irmp_bit; // patch length: 16 or 17 irmp_tmp_command = (irmp_tmp_address >> 4); // set command: upper 12 bits are command bits irmp_tmp_address = irmp_tmp_address & 0x000F; // lower 4 bits are address bits irmp_start_bit_detected = 1; // tricky: don't wait for another start bit... } #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 else { ANALYZE_PRINTF ("error 2: pause %d after data bit %d too long\n", irmp_pause_time, irmp_bit); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); irmp_start_bit_detected = 0; // wait for another start bit... irmp_pulse_time = 0; irmp_pause_time = 0; } } } } else { // got light now! got_light = TRUE; } if (got_light) { ANALYZE_PRINTF ("%8d [bit %2d: pulse = %3d, pause = %3d] ", time_counter, irmp_bit, irmp_pulse_time, irmp_pause_time); #if IRMP_SUPPORT_MANCHESTER == 1 if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) // Manchester { if (irmp_pulse_time > irmp_param.pulse_1_len_max /* && irmp_pulse_time <= irmp_param.pulse_0_len_max */) { #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 4 && irmp_pulse_time > RC6_TOGGLE_BIT_LEN_MIN) // RC6 toggle bit { ANALYZE_PUTCHAR ('T'); if (irmp_param.complete_len == RC6_COMPLETE_DATA_LEN_LONG) // RC6 mode 6A { irmp_store_bit (1); last_value = 1; } else // RC6 mode 0 { irmp_store_bit (0); last_value = 0; } ANALYZE_NEWLINE (); } else #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 { ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '0' : '1'); irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 0 : 1 ); #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 4 && irmp_pulse_time > RC6_TOGGLE_BIT_LEN_MIN) // RC6 toggle bit { ANALYZE_PUTCHAR ('T'); irmp_store_bit (1); if (irmp_pause_time > irmp_param.pause_0_len_max) { last_value = 0; } else { last_value = 1; } ANALYZE_NEWLINE (); } else #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 { ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '1' : '0'); irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0 ); #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) if (! irmp_param2.protocol) #endif { ANALYZE_NEWLINE (); } last_value = (irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0; } } } else if (irmp_pulse_time >= irmp_param.pulse_1_len_min && irmp_pulse_time <= irmp_param.pulse_1_len_max) { uint8_t manchester_value; if (last_pause > irmp_param.pause_1_len_max && last_pause <= irmp_param.pause_0_len_max) { manchester_value = last_value ? 0 : 1; last_value = manchester_value; } else { manchester_value = last_value; } ANALYZE_PUTCHAR (manchester_value + '0'); #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) if (! irmp_param2.protocol) #endif { ANALYZE_NEWLINE (); } #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 1 && manchester_value == 1) // RC6 mode != 0 ??? { ANALYZE_PRINTF ("Switching to RC6A protocol\n"); irmp_param.complete_len = RC6_COMPLETE_DATA_LEN_LONG; irmp_param.address_offset = 5; irmp_param.address_end = irmp_param.address_offset + 15; irmp_param.command_offset = irmp_param.address_end + 1; // skip 1 system bit, changes like a toggle bit irmp_param.command_end = irmp_param.command_offset + 16 - 1; irmp_tmp_address = 0; } #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 irmp_store_bit (manchester_value); } else { #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_param2.protocol == IRMP_FDC_PROTOCOL && irmp_pulse_time >= FDC_PULSE_LEN_MIN && irmp_pulse_time <= FDC_PULSE_LEN_MAX && ((irmp_pause_time >= FDC_1_PAUSE_LEN_MIN && irmp_pause_time <= FDC_1_PAUSE_LEN_MAX) || (irmp_pause_time >= FDC_0_PAUSE_LEN_MIN && irmp_pause_time <= FDC_0_PAUSE_LEN_MAX))) { ANALYZE_PUTCHAR ('?'); irmp_param.protocol = 0; // switch to FDC, see below } else #endif // IRMP_SUPPORT_FDC_PROTOCOL == 1 #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_RCCAR_PROTOCOL == 1 if (irmp_param2.protocol == IRMP_RCCAR_PROTOCOL && irmp_pulse_time >= RCCAR_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_PULSE_LEN_MAX && ((irmp_pause_time >= RCCAR_1_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_1_PAUSE_LEN_MAX) || (irmp_pause_time >= RCCAR_0_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_0_PAUSE_LEN_MAX))) { ANALYZE_PUTCHAR ('?'); irmp_param.protocol = 0; // switch to RCCAR, see below } else #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 { ANALYZE_PUTCHAR ('?'); ANALYZE_NEWLINE (); ANALYZE_PRINTF ("error 3 manchester: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_param2.protocol == IRMP_FDC_PROTOCOL && irmp_pulse_time >= FDC_PULSE_LEN_MIN && irmp_pulse_time <= FDC_PULSE_LEN_MAX) { if (irmp_pause_time >= FDC_1_PAUSE_LEN_MIN && irmp_pause_time <= FDC_1_PAUSE_LEN_MAX) { ANALYZE_PRINTF (" 1 (FDC)\n"); irmp_store_bit2 (1); } else if (irmp_pause_time >= FDC_0_PAUSE_LEN_MIN && irmp_pause_time <= FDC_0_PAUSE_LEN_MAX) { ANALYZE_PRINTF (" 0 (FDC)\n"); irmp_store_bit2 (0); } if (! irmp_param.protocol) { ANALYZE_PRINTF ("Switching to FDC protocol\n"); memcpy (&irmp_param, &irmp_param2, sizeof (IRMP_PARAMETER)); irmp_param2.protocol = 0; irmp_tmp_address = irmp_tmp_address2; irmp_tmp_command = irmp_tmp_command2; } } #endif // IRMP_SUPPORT_FDC_PROTOCOL == 1 #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_RCCAR_PROTOCOL == 1 if (irmp_param2.protocol == IRMP_RCCAR_PROTOCOL && irmp_pulse_time >= RCCAR_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_PULSE_LEN_MAX) { if (irmp_pause_time >= RCCAR_1_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_1_PAUSE_LEN_MAX) { ANALYZE_PRINTF (" 1 (RCCAR)\n"); irmp_store_bit2 (1); } else if (irmp_pause_time >= RCCAR_0_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_0_PAUSE_LEN_MAX) { ANALYZE_PRINTF (" 0 (RCCAR)\n"); irmp_store_bit2 (0); } if (! irmp_param.protocol) { ANALYZE_PRINTF ("Switching to RCCAR protocol\n"); memcpy (&irmp_param, &irmp_param2, sizeof (IRMP_PARAMETER)); irmp_param2.protocol = 0; irmp_tmp_address = irmp_tmp_address2; irmp_tmp_command = irmp_tmp_command2; } } #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 last_pause = irmp_pause_time; wait_for_space = 0; } else #endif // IRMP_SUPPORT_MANCHESTER == 1 #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 if (irmp_param.protocol == IRMP_SAMSUNG_PROTOCOL && irmp_bit == 16) // Samsung: 16th bit { if (irmp_pulse_time >= SAMSUNG_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_PULSE_LEN_MAX && irmp_pause_time >= SAMSUNG_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_START_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("SYNC\n"); wait_for_space = 0; irmp_tmp_id = 0; irmp_bit++; } else if (irmp_pulse_time >= SAMSUNG_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_PULSE_LEN_MAX) { irmp_param.protocol = IRMP_SAMSUNG32_PROTOCOL; irmp_param.command_offset = SAMSUNG32_COMMAND_OFFSET; irmp_param.command_end = SAMSUNG32_COMMAND_OFFSET + SAMSUNG32_COMMAND_LEN; irmp_param.complete_len = SAMSUNG32_COMPLETE_DATA_LEN; if (irmp_pause_time >= SAMSUNG_1_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_1_PAUSE_LEN_MAX) { ANALYZE_PUTCHAR ('1'); ANALYZE_NEWLINE (); irmp_store_bit (1); wait_for_space = 0; } else { ANALYZE_PUTCHAR ('0'); ANALYZE_NEWLINE (); irmp_store_bit (0); wait_for_space = 0; } ANALYZE_PRINTF ("Switching to SAMSUNG32 protocol\n"); } else { // timing incorrect! ANALYZE_PRINTF ("error 3 Samsung: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } else #endif // IRMP_SUPPORT_SAMSUNG_PROTOCOL #if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 if (irmp_param.protocol == IRMP_BANG_OLUFSEN_PROTOCOL) { if (irmp_pulse_time >= BANG_OLUFSEN_PULSE_LEN_MIN && irmp_pulse_time <= BANG_OLUFSEN_PULSE_LEN_MAX) { if (irmp_bit == 1) // Bang & Olufsen: 3rd bit { if (irmp_pause_time >= BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("3rd start bit\n"); wait_for_space = 0; irmp_bit++; } else { // timing incorrect! ANALYZE_PRINTF ("error 3a B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } else if (irmp_bit == 19) // Bang & Olufsen: trailer bit { if (irmp_pause_time >= BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("trailer bit\n"); wait_for_space = 0; irmp_bit++; } else { // timing incorrect! ANALYZE_PRINTF ("error 3b B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } else { if (irmp_pause_time >= BANG_OLUFSEN_1_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_1_PAUSE_LEN_MAX) { // pulse & pause timings correct for "1"? ANALYZE_PUTCHAR ('1'); ANALYZE_NEWLINE (); irmp_store_bit (1); last_value = 1; wait_for_space = 0; } else if (irmp_pause_time >= BANG_OLUFSEN_0_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_0_PAUSE_LEN_MAX) { // pulse & pause timings correct for "0"? ANALYZE_PUTCHAR ('0'); ANALYZE_NEWLINE (); irmp_store_bit (0); last_value = 0; wait_for_space = 0; } else if (irmp_pause_time >= BANG_OLUFSEN_R_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_R_PAUSE_LEN_MAX) { ANALYZE_PUTCHAR (last_value + '0'); ANALYZE_NEWLINE (); irmp_store_bit (last_value); wait_for_space = 0; } else { // timing incorrect! ANALYZE_PRINTF ("error 3c B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } } else { // timing incorrect! ANALYZE_PRINTF ("error 3d B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } else #endif // IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL if (irmp_pulse_time >= irmp_param.pulse_1_len_min && irmp_pulse_time <= irmp_param.pulse_1_len_max && irmp_pause_time >= irmp_param.pause_1_len_min && irmp_pause_time <= irmp_param.pause_1_len_max) { // pulse & pause timings correct for "1"? ANALYZE_PUTCHAR ('1'); ANALYZE_NEWLINE (); irmp_store_bit (1); wait_for_space = 0; } else if (irmp_pulse_time >= irmp_param.pulse_0_len_min && irmp_pulse_time <= irmp_param.pulse_0_len_max && irmp_pause_time >= irmp_param.pause_0_len_min && irmp_pause_time <= irmp_param.pause_0_len_max) { // pulse & pause timings correct for "0"? ANALYZE_PUTCHAR ('0'); ANALYZE_NEWLINE (); irmp_store_bit (0); wait_for_space = 0; } else { // timing incorrect! ANALYZE_PRINTF ("error 3: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } irmp_pulse_time = 1; // set counter to 1, not 0 } } else { // counting the pulse length ... if (! irmp_input) // still light? { // yes... irmp_pulse_time++; // increment counter } else { // now it's dark! wait_for_space = 1; // let's count the time (see above) irmp_pause_time = 1; // set pause counter to 1, not 0 } } if (irmp_start_bit_detected && irmp_bit == irmp_param.complete_len && irmp_param.stop_bit == 0) // enough bits received? { if (last_irmp_command == irmp_tmp_command && repetition_len < AUTO_FRAME_REPETITION_LEN) { repetition_frame_number++; } else { repetition_frame_number = 0; } #if IRMP_SUPPORT_SIRCS_PROTOCOL == 1 // if SIRCS protocol and the code will be repeated within 50 ms, we will ignore 2nd and 3rd repetition frame if (irmp_param.protocol == IRMP_SIRCS_PROTOCOL && (repetition_frame_number == 1 || repetition_frame_number == 2)) { ANALYZE_PRINTF ("code skipped: SIRCS auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, repetition_len, AUTO_FRAME_REPETITION_LEN); repetition_len = 0; } else #endif #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 // if KASEIKYO protocol and the code will be repeated within 50 ms, we will ignore 2nd repetition frame if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL && repetition_frame_number == 1) { ANALYZE_PRINTF ("code skipped: KASEIKYO auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, repetition_len, AUTO_FRAME_REPETITION_LEN); repetition_len = 0; } else #endif #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 // if SAMSUNG32 protocol and the code will be repeated within 50 ms, we will ignore every 2nd frame if (irmp_param.protocol == IRMP_SAMSUNG32_PROTOCOL && (repetition_frame_number & 0x01)) { ANALYZE_PRINTF ("code skipped: SAMSUNG32 auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, repetition_len, AUTO_FRAME_REPETITION_LEN); repetition_len = 0; } else #endif #if IRMP_SUPPORT_NUBERT_PROTOCOL == 1 // if NUBERT protocol and the code will be repeated within 50 ms, we will ignore every 2nd frame if (irmp_param.protocol == IRMP_NUBERT_PROTOCOL && (repetition_frame_number & 0x01)) { ANALYZE_PRINTF ("code skipped: NUBERT auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, repetition_len, AUTO_FRAME_REPETITION_LEN); repetition_len = 0; } else #endif { ANALYZE_PRINTF ("%8d code detected, length = %d\n", time_counter, irmp_bit); irmp_ir_detected = TRUE; #if IRMP_SUPPORT_DENON_PROTOCOL == 1 if (irmp_param.protocol == IRMP_DENON_PROTOCOL) { // check for repetition frame if ((~irmp_tmp_command & 0x3FF) == last_irmp_denon_command) // command bits must be inverted { irmp_tmp_command = last_irmp_denon_command; // use command received before! irmp_protocol = irmp_param.protocol; // store protocol irmp_address = irmp_tmp_address; // store address irmp_command = irmp_tmp_command ; // store command } else { ANALYZE_PRINTF ("waiting for inverted command repetition\n"); irmp_ir_detected = FALSE; last_irmp_denon_command = irmp_tmp_command; } } else #endif // IRMP_SUPPORT_DENON_PROTOCOL #if IRMP_SUPPORT_GRUNDIG_PROTOCOL == 1 if (irmp_param.protocol == IRMP_GRUNDIG_PROTOCOL && irmp_tmp_command == 0x01ff) { // Grundig start frame? ANALYZE_PRINTF ("Detected GRUNDIG start frame, ignoring it\n"); irmp_ir_detected = FALSE; } else #endif // IRMP_SUPPORT_GRUNDIG_PROTOCOL #if IRMP_SUPPORT_NOKIA_PROTOCOL == 1 if (irmp_param.protocol == IRMP_NOKIA_PROTOCOL && irmp_tmp_address == 0x00ff && irmp_tmp_command == 0x00fe) { // Nokia start frame? ANALYZE_PRINTF ("Detected NOKIA start frame, ignoring it\n"); irmp_ir_detected = FALSE; } else #endif // IRMP_SUPPORT_NOKIA_PROTOCOL { #if IRMP_SUPPORT_NEC_PROTOCOL == 1 if (irmp_param.protocol == IRMP_NEC_PROTOCOL && irmp_bit == 0) // repetition frame { if (repetition_len < NEC_FRAME_REPEAT_PAUSE_LEN_MAX) { ANALYZE_PRINTF ("Detected NEC repetition frame, repetition_len = %d\n", repetition_len); irmp_tmp_address = last_irmp_address; // address is last address irmp_tmp_command = last_irmp_command; // command is last command irmp_flags |= IRMP_FLAG_REPETITION; repetition_len = 0; } else { ANALYZE_PRINTF ("Detected NEC repetition frame, ignoring it: timeout occured, repetition_len = %d > %d\n", repetition_len, NEC_FRAME_REPEAT_PAUSE_LEN_MAX); irmp_ir_detected = FALSE; } } #endif // IRMP_SUPPORT_NEC_PROTOCOL #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL) { uint8_t xor; // ANALYZE_PRINTF ("0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n", // xor_check[0], xor_check[1], xor_check[2], xor_check[3], xor_check[4], xor_check[5]); xor = (xor_check[0] & 0x0F) ^ ((xor_check[0] & 0xF0) >> 4) ^ (xor_check[1] & 0x0F) ^ ((xor_check[1] & 0xF0) >> 4); if (xor != (xor_check[2] & 0x0F)) { ANALYZE_PRINTF ("error 4: wrong XOR check for customer id: 0x%1x 0x%1x\n", xor, xor_check[2] & 0x0F); irmp_ir_detected = FALSE; } xor = xor_check[2] ^ xor_check[3] ^ xor_check[4]; if (xor != xor_check[5]) { ANALYZE_PRINTF ("error 4: wrong XOR check for data bits: 0x%02x 0x%02x\n", xor, xor_check[5]); irmp_ir_detected = FALSE; } } #endif // IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_param.complete_len == RC6_COMPLETE_DATA_LEN_LONG) // RC6 mode = 6? { irmp_protocol = IRMP_RC6A_PROTOCOL; } else #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 irmp_protocol = irmp_param.protocol; #if IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_param.protocol == IRMP_FDC_PROTOCOL) { if (irmp_tmp_command & 0x000F) // released key? { irmp_tmp_command = (irmp_tmp_command >> 4) | 0x80; // yes, set bit 7 } else { irmp_tmp_command >>= 4; // no, it's a pressed key } irmp_tmp_command |= (irmp_tmp_address << 2) & 0x0F00; // 000000CCCCAAAAAA -> 0000CCCC00000000 irmp_tmp_address &= 0x003F; } #endif irmp_address = irmp_tmp_address; // store address #if IRMP_SUPPORT_NEC_PROTOCOL == 1 last_irmp_address = irmp_tmp_address; // store as last address, too #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC5_PROTOCOL) { irmp_tmp_command |= rc5_cmd_bit6; // store bit 6 } #endif irmp_command = irmp_tmp_command; // store command #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 irmp_id = irmp_tmp_id; #endif } } if (irmp_ir_detected) { if (last_irmp_command == irmp_command && last_irmp_address == irmp_address && repetition_len < IRMP_KEY_REPETITION_LEN) { irmp_flags |= IRMP_FLAG_REPETITION; } last_irmp_address = irmp_tmp_address; // store as last address, too last_irmp_command = irmp_tmp_command; // store as last command, too repetition_len = 0; } else { ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); } irmp_start_bit_detected = 0; // and wait for next start bit irmp_tmp_command = 0; irmp_pulse_time = 0; irmp_pause_time = 0; #if IRMP_SUPPORT_JVC_PROTOCOL == 1 if (irmp_protocol == IRMP_JVC_PROTOCOL) // the stop bit of JVC frame is also start bit of next frame { // set pulse time here! irmp_pulse_time = ((uint8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME)); } #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 } } } return (irmp_ir_detected); } #ifdef ANALYZE /*--------------------------------------------------------------------------------------------------------------------------------------------------- * main functions - for Unix/Linux + Windows only! * * AVR: see main.c! * * Compile it under linux with: * cc irmp.c -o irmp * * usage: ./irmp [-v|-s|-a|-l|-p] < file * * options: * -v verbose * -s silent * -a analyze * -l list pulse/pauses * -p print timings *--------------------------------------------------------------------------------------------------------------------------------------------------- */ static void print_timings (void) { printf ("IRMP_TIMEOUT_LEN: %d [%d byte(s)]\n", IRMP_TIMEOUT_LEN, sizeof (PAUSE_LEN)); printf ("IRMP_KEY_REPETITION_LEN %d\n", IRMP_KEY_REPETITION_LEN); puts (""); printf ("PROTOCOL S S-PULSE S-PAUSE PULSE-0 PAUSE-0 PULSE-1 PAUSE-1\n"); printf ("====================================================================================\n"); printf ("SIRCS 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", SIRCS_START_BIT_PULSE_LEN_MIN, SIRCS_START_BIT_PULSE_LEN_MAX, SIRCS_START_BIT_PAUSE_LEN_MIN, SIRCS_START_BIT_PAUSE_LEN_MAX, SIRCS_0_PULSE_LEN_MIN, SIRCS_0_PULSE_LEN_MAX, SIRCS_PAUSE_LEN_MIN, SIRCS_PAUSE_LEN_MAX, SIRCS_1_PULSE_LEN_MIN, SIRCS_1_PULSE_LEN_MAX, SIRCS_PAUSE_LEN_MIN, SIRCS_PAUSE_LEN_MAX); printf ("NEC 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_START_BIT_PAUSE_LEN_MIN, NEC_START_BIT_PAUSE_LEN_MAX, NEC_PULSE_LEN_MIN, NEC_PULSE_LEN_MAX, NEC_0_PAUSE_LEN_MIN, NEC_0_PAUSE_LEN_MAX, NEC_PULSE_LEN_MIN, NEC_PULSE_LEN_MAX, NEC_1_PAUSE_LEN_MIN, NEC_1_PAUSE_LEN_MAX); printf ("NEC (rep) 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_REPEAT_START_BIT_PAUSE_LEN_MIN, NEC_REPEAT_START_BIT_PAUSE_LEN_MAX, NEC_PULSE_LEN_MIN, NEC_PULSE_LEN_MAX, NEC_0_PAUSE_LEN_MIN, NEC_0_PAUSE_LEN_MAX, NEC_PULSE_LEN_MIN, NEC_PULSE_LEN_MAX, NEC_1_PAUSE_LEN_MIN, NEC_1_PAUSE_LEN_MAX); printf ("SAMSUNG 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", SAMSUNG_START_BIT_PULSE_LEN_MIN, SAMSUNG_START_BIT_PULSE_LEN_MAX, SAMSUNG_START_BIT_PAUSE_LEN_MIN, SAMSUNG_START_BIT_PAUSE_LEN_MAX, SAMSUNG_PULSE_LEN_MIN, SAMSUNG_PULSE_LEN_MAX, SAMSUNG_0_PAUSE_LEN_MIN, SAMSUNG_0_PAUSE_LEN_MAX, SAMSUNG_PULSE_LEN_MIN, SAMSUNG_PULSE_LEN_MAX, SAMSUNG_1_PAUSE_LEN_MIN, SAMSUNG_1_PAUSE_LEN_MAX); printf ("MATSUSHITA 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", MATSUSHITA_START_BIT_PULSE_LEN_MIN, MATSUSHITA_START_BIT_PULSE_LEN_MAX, MATSUSHITA_START_BIT_PAUSE_LEN_MIN, MATSUSHITA_START_BIT_PAUSE_LEN_MAX, MATSUSHITA_PULSE_LEN_MIN, MATSUSHITA_PULSE_LEN_MAX, MATSUSHITA_0_PAUSE_LEN_MIN, MATSUSHITA_0_PAUSE_LEN_MAX, MATSUSHITA_PULSE_LEN_MIN, MATSUSHITA_PULSE_LEN_MAX, MATSUSHITA_1_PAUSE_LEN_MIN, MATSUSHITA_1_PAUSE_LEN_MAX); printf ("KASEIKYO 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", KASEIKYO_START_BIT_PULSE_LEN_MIN, KASEIKYO_START_BIT_PULSE_LEN_MAX, KASEIKYO_START_BIT_PAUSE_LEN_MIN, KASEIKYO_START_BIT_PAUSE_LEN_MAX, KASEIKYO_PULSE_LEN_MIN, KASEIKYO_PULSE_LEN_MAX, KASEIKYO_0_PAUSE_LEN_MIN, KASEIKYO_0_PAUSE_LEN_MAX, KASEIKYO_PULSE_LEN_MIN, KASEIKYO_PULSE_LEN_MAX, KASEIKYO_1_PAUSE_LEN_MIN, KASEIKYO_1_PAUSE_LEN_MAX); printf ("RECS80 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", RECS80_START_BIT_PULSE_LEN_MIN, RECS80_START_BIT_PULSE_LEN_MAX, RECS80_START_BIT_PAUSE_LEN_MIN, RECS80_START_BIT_PAUSE_LEN_MAX, RECS80_PULSE_LEN_MIN, RECS80_PULSE_LEN_MAX, RECS80_0_PAUSE_LEN_MIN, RECS80_0_PAUSE_LEN_MAX, RECS80_PULSE_LEN_MIN, RECS80_PULSE_LEN_MAX, RECS80_1_PAUSE_LEN_MIN, RECS80_1_PAUSE_LEN_MAX); printf ("RC5 1 %3d - %3d %3d - %3d %3d - %3d\n", RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_BIT_LEN_MIN, RC5_BIT_LEN_MAX); printf ("DENON 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX, DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX, DENON_0_PAUSE_LEN_MIN, DENON_0_PAUSE_LEN_MAX, DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX, DENON_1_PAUSE_LEN_MIN, DENON_1_PAUSE_LEN_MAX); printf ("RC6 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", RC6_START_BIT_PULSE_LEN_MIN, RC6_START_BIT_PULSE_LEN_MAX, RC6_START_BIT_PAUSE_LEN_MIN, RC6_START_BIT_PAUSE_LEN_MAX, RC6_BIT_PULSE_LEN_MIN, RC6_BIT_PULSE_LEN_MAX, RC6_BIT_PAUSE_LEN_MIN, RC6_BIT_PAUSE_LEN_MAX); printf ("RECS80EXT 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", RECS80EXT_START_BIT_PULSE_LEN_MIN, RECS80EXT_START_BIT_PULSE_LEN_MAX, RECS80EXT_START_BIT_PAUSE_LEN_MIN, RECS80EXT_START_BIT_PAUSE_LEN_MAX, RECS80EXT_PULSE_LEN_MIN, RECS80EXT_PULSE_LEN_MAX, RECS80EXT_0_PAUSE_LEN_MIN, RECS80EXT_0_PAUSE_LEN_MAX, RECS80EXT_PULSE_LEN_MIN, RECS80EXT_PULSE_LEN_MAX, RECS80EXT_1_PAUSE_LEN_MIN, RECS80EXT_1_PAUSE_LEN_MAX); printf ("NUBERT 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", NUBERT_START_BIT_PULSE_LEN_MIN, NUBERT_START_BIT_PULSE_LEN_MAX, NUBERT_START_BIT_PAUSE_LEN_MIN, NUBERT_START_BIT_PAUSE_LEN_MAX, NUBERT_0_PULSE_LEN_MIN, NUBERT_0_PULSE_LEN_MAX, NUBERT_0_PAUSE_LEN_MIN, NUBERT_0_PAUSE_LEN_MAX, NUBERT_1_PULSE_LEN_MIN, NUBERT_1_PULSE_LEN_MAX, NUBERT_1_PAUSE_LEN_MIN, NUBERT_1_PAUSE_LEN_MAX); printf ("BANG_OLUFSEN 1 %3d - %3d %3d - %3d\n", BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX); printf ("BANG_OLUFSEN 2 %3d - %3d %3d - %3d\n", BANG_OLUFSEN_START_BIT2_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MAX); printf ("BANG_OLUFSEN 3 %3d - %3d %3d - %3d\n", BANG_OLUFSEN_START_BIT3_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX); printf ("BANG_OLUFSEN 4 %3d - %3d %3d - %3d\n", BANG_OLUFSEN_START_BIT4_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MAX); printf ("BANG_OLUFSEN - %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", BANG_OLUFSEN_PULSE_LEN_MIN, BANG_OLUFSEN_PULSE_LEN_MAX, BANG_OLUFSEN_0_PAUSE_LEN_MIN, BANG_OLUFSEN_0_PAUSE_LEN_MAX, BANG_OLUFSEN_PULSE_LEN_MIN, BANG_OLUFSEN_PULSE_LEN_MAX, BANG_OLUFSEN_1_PAUSE_LEN_MIN, BANG_OLUFSEN_1_PAUSE_LEN_MAX); printf ("GRUNDIG/NOKIA 1 %3d - %3d %3d - %3d %3d - %3d\n", GRUNDIG_OR_NOKIA_START_BIT_LEN_MIN, GRUNDIG_OR_NOKIA_START_BIT_LEN_MAX, GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MIN, GRUNDIG_OR_NOKIA_PRE_PAUSE_LEN_MAX, GRUNDIG_OR_NOKIA_BIT_LEN_MIN, GRUNDIG_OR_NOKIA_BIT_LEN_MAX); printf ("SIEMENS 1 %3d - %3d %3d - %3d %3d - %3d\n", SIEMENS_START_BIT_LEN_MIN, SIEMENS_START_BIT_LEN_MAX, SIEMENS_START_BIT_LEN_MIN, SIEMENS_START_BIT_LEN_MAX, SIEMENS_BIT_LEN_MIN, SIEMENS_BIT_LEN_MAX); printf ("FDC 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", FDC_START_BIT_PULSE_LEN_MIN, FDC_START_BIT_PULSE_LEN_MAX, FDC_START_BIT_PAUSE_LEN_MIN, FDC_START_BIT_PAUSE_LEN_MAX, FDC_PULSE_LEN_MIN, FDC_PULSE_LEN_MAX, FDC_0_PAUSE_LEN_MIN, FDC_0_PAUSE_LEN_MAX, FDC_PULSE_LEN_MIN, FDC_PULSE_LEN_MAX, FDC_1_PAUSE_LEN_MIN, FDC_1_PAUSE_LEN_MAX); printf ("RCCAR 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", RCCAR_START_BIT_PULSE_LEN_MIN, RCCAR_START_BIT_PULSE_LEN_MAX, RCCAR_START_BIT_PAUSE_LEN_MIN, RCCAR_START_BIT_PAUSE_LEN_MAX, RCCAR_PULSE_LEN_MIN, RCCAR_PULSE_LEN_MAX, RCCAR_0_PAUSE_LEN_MIN, RCCAR_0_PAUSE_LEN_MAX, RCCAR_PULSE_LEN_MIN, RCCAR_PULSE_LEN_MAX, RCCAR_1_PAUSE_LEN_MIN, RCCAR_1_PAUSE_LEN_MAX); printf ("NIKON 1 %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d %3d - %3d\n", NIKON_START_BIT_PULSE_LEN_MIN, NIKON_START_BIT_PULSE_LEN_MAX, NIKON_START_BIT_PAUSE_LEN_MIN, NIKON_START_BIT_PAUSE_LEN_MAX, NIKON_PULSE_LEN_MIN, NIKON_PULSE_LEN_MAX, NIKON_0_PAUSE_LEN_MIN, NIKON_0_PAUSE_LEN_MAX, NIKON_PULSE_LEN_MIN, NIKON_PULSE_LEN_MAX, NIKON_1_PAUSE_LEN_MIN, NIKON_1_PAUSE_LEN_MAX); } void print_spectrum (char * text, int * buf, int is_pulse) { int i; int j; int min; int max; int max_value = 0; int value; int sum = 0; int counter = 0; double average = 0; double tolerance; puts ("-------------------------------------------------------------------------------"); printf ("%s:\n", text); for (i = 0; i < 256; i++) { if (buf[i] > max_value) { max_value = buf[i]; } } for (i = 1; i < 100; i++) { if (buf[i] > 0) { printf ("%3d ", i); value = (buf[i] * 60) / max_value; for (j = 0; j < value; j++) { putchar ('o'); } printf (" %d\n", buf[i]); sum += i * buf[i]; counter += buf[i]; } else { max = i - 1; if (counter > 0) { average = (float) sum / (float) counter; if (is_pulse) { printf ("pulse "); } else { printf ("pause "); } printf ("avg: %4.1f=%6.1f us, ", average, (1000000. * average) / (float) F_INTERRUPTS); printf ("min: %2d=%6.1f us, ", min, (1000000. * min) / (float) F_INTERRUPTS); printf ("max: %2d=%6.1f us, ", max, (1000000. * max) / (float) F_INTERRUPTS); tolerance = (max - average); if (average - min > tolerance) { tolerance = average - min; } tolerance = tolerance * 100 / average; printf ("tol: %4.1f%%\n", tolerance); } counter = 0; sum = 0; min = i + 1; } } } #define STATE_LEFT_SHIFT 0x01 #define STATE_RIGHT_SHIFT 0x02 #define STATE_LEFT_CTRL 0x04 #define STATE_LEFT_ALT 0x08 #define STATE_RIGHT_ALT 0x10 #define KEY_ESCAPE 0x1B // keycode = 0x006e #define KEY_MENUE 0x80 // keycode = 0x0070 #define KEY_BACK 0x81 // keycode = 0x0071 #define KEY_FORWARD 0x82 // keycode = 0x0072 #define KEY_ADDRESS 0x83 // keycode = 0x0073 #define KEY_WINDOW 0x84 // keycode = 0x0074 #define KEY_1ST_PAGE 0x85 // keycode = 0x0075 #define KEY_STOP 0x86 // keycode = 0x0076 #define KEY_MAIL 0x87 // keycode = 0x0077 #define KEY_FAVORITES 0x88 // keycode = 0x0078 #define KEY_NEW_PAGE 0x89 // keycode = 0x0079 #define KEY_SETUP 0x8A // keycode = 0x007a #define KEY_FONT 0x8B // keycode = 0x007b #define KEY_PRINT 0x8C // keycode = 0x007c #define KEY_ON_OFF 0x8E // keycode = 0x007c #define KEY_INSERT 0x90 // keycode = 0x004b #define KEY_DELETE 0x91 // keycode = 0x004c #define KEY_LEFT 0x92 // keycode = 0x004f #define KEY_HOME 0x93 // keycode = 0x0050 #define KEY_END 0x94 // keycode = 0x0051 #define KEY_UP 0x95 // keycode = 0x0053 #define KEY_DOWN 0x96 // keycode = 0x0054 #define KEY_PAGE_UP 0x97 // keycode = 0x0055 #define KEY_PAGE_DOWN 0x98 // keycode = 0x0056 #define KEY_RIGHT 0x99 // keycode = 0x0059 #define KEY_MOUSE_1 0x9E // keycode = 0x0400 #define KEY_MOUSE_2 0x9F // keycode = 0x0800 static uint8_t get_fdc_key (uint16_t cmd) { static uint8_t key_table[128] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F 0, '^', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 'ß', '´', 0, '\b', '\t','q', 'w', 'e', 'r', 't', 'z', 'u', 'i', 'o', 'p', 'ü', '+', 0, 0, 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'ö', 'ä', '#', '\r', 0, '<', 'y', 'x', 'c', 'v', 'b', 'n', 'm', ',', '.', '-', 0, 0, 0, 0, 0, ' ', 0, 0, 0, '°', '!', '"', '§', '$', '%', '&', '/', '(', ')', '=', '?', '`', 0, '\b', '\t','Q', 'W', 'E', 'R', 'T', 'Z', 'U', 'I', 'O', 'P', 'Ü', '*', 0, 0, 'A', 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'Ö', 'Ä', '\'','\r', 0, '>', 'Y', 'X', 'C', 'V', 'B', 'N', 'M', ';', ':', '_', 0, 0, 0, 0, 0, ' ', 0, 0 }; static uint8_t state; uint8_t key = 0; switch (cmd) { case 0x002C: state |= STATE_LEFT_SHIFT; break; // pressed left shift case 0x00AC: state &= ~STATE_LEFT_SHIFT; break; // released left shift case 0x0039: state |= STATE_RIGHT_SHIFT; break; // pressed right shift case 0x00B9: state &= ~STATE_RIGHT_SHIFT; break; // released right shift case 0x003A: state |= STATE_LEFT_CTRL; break; // pressed left ctrl case 0x00BA: state &= ~STATE_LEFT_CTRL; break; // released left ctrl case 0x003C: state |= STATE_LEFT_ALT; break; // pressed left alt case 0x00BC: state &= ~STATE_LEFT_ALT; break; // released left alt case 0x003E: state |= STATE_RIGHT_ALT; break; // pressed left alt case 0x00BE: state &= ~STATE_RIGHT_ALT; break; // released left alt case 0x006e: key = KEY_ESCAPE; break; case 0x004b: key = KEY_INSERT; break; case 0x004c: key = KEY_DELETE; break; case 0x004f: key = KEY_LEFT; break; case 0x0050: key = KEY_HOME; break; case 0x0051: key = KEY_END; break; case 0x0053: key = KEY_UP; break; case 0x0054: key = KEY_DOWN; break; case 0x0055: key = KEY_PAGE_UP; break; case 0x0056: key = KEY_PAGE_DOWN; break; case 0x0059: key = KEY_RIGHT; break; case 0x0400: key = KEY_MOUSE_1; break; case 0x0800: key = KEY_MOUSE_2; break; default: { if (!(cmd & 0x80)) // pressed key { if (cmd >= 0x70 && cmd <= 0x7F) // function keys { key = cmd + 0x10; // 7x -> 8x } else if (cmd < 64) // key listed in key_table { if (state & (STATE_LEFT_ALT | STATE_RIGHT_ALT)) { switch (cmd) { case 0x0003: key = '²'; break; case 0x0008: key = '{'; break; case 0x0009: key = '['; break; case 0x000A: key = ']'; break; case 0x000B: key = '}'; break; case 0x000C: key = '\\'; break; case 0x001C: key = '~'; break; case 0x002D: key = '|'; break; case 0x0034: key = 'µ'; break; } } else if (state & (STATE_LEFT_CTRL)) { if (key_table[cmd] >= 'a' && key_table[cmd] <= 'z') { key = key_table[cmd] - 'a' + 1; } else { key = key_table[cmd]; } } else { int idx = cmd + ((state & (STATE_LEFT_SHIFT | STATE_RIGHT_SHIFT)) ? 64 : 0); if (key_table[idx]) { key = key_table[idx]; } } } } break; } } return (key); } static int analyze = FALSE; static int list = FALSE; static IRMP_DATA irmp_data; static void next_tick (void) { if (! analyze && ! list) { (void) irmp_ISR (); if (irmp_get_data (&irmp_data)) { uint8_t key; ANALYZE_ONLY_NORMAL_PUTCHAR (' '); if (verbose) { printf ("%8d ", time_counter); } if (irmp_data.protocol == IRMP_FDC_PROTOCOL && (key = get_fdc_key (irmp_data.command)) != 0) { if ((key >= 0x20 && key < 0x7F) || key >= 0xA0) { printf ("p = %2d, a = 0x%04x, c = 0x%04x, f = 0x%02x, asc = 0x%02x, key = '%c'\n", irmp_data.protocol, irmp_data.address, irmp_data.command, irmp_data.flags, key, key); } else if (key == '\r' || key == '\t' || key == KEY_ESCAPE || (key >= 0x80 && key <= 0x9F)) // function keys { char * p = (char *) NULL; switch (key) { case '\t' : p = "TAB"; break; case '\r' : p = "CR"; break; case KEY_ESCAPE : p = "ESCAPE"; break; case KEY_MENUE : p = "MENUE"; break; case KEY_BACK : p = "BACK"; break; case KEY_FORWARD : p = "FORWARD"; break; case KEY_ADDRESS : p = "ADDRESS"; break; case KEY_WINDOW : p = "WINDOW"; break; case KEY_1ST_PAGE : p = "1ST_PAGE"; break; case KEY_STOP : p = "STOP"; break; case KEY_MAIL : p = "MAIL"; break; case KEY_FAVORITES : p = "FAVORITES"; break; case KEY_NEW_PAGE : p = "NEW_PAGE"; break; case KEY_SETUP : p = "SETUP"; break; case KEY_FONT : p = "FONT"; break; case KEY_PRINT : p = "PRINT"; break; case KEY_ON_OFF : p = "ON_OFF"; break; case KEY_INSERT : p = "INSERT"; break; case KEY_DELETE : p = "DELETE"; break; case KEY_LEFT : p = "LEFT"; break; case KEY_HOME : p = "HOME"; break; case KEY_END : p = "END"; break; case KEY_UP : p = "UP"; break; case KEY_DOWN : p = "DOWN"; break; case KEY_PAGE_UP : p = "PAGE_UP"; break; case KEY_PAGE_DOWN : p = "PAGE_DOWN"; break; case KEY_RIGHT : p = "RIGHT"; break; case KEY_MOUSE_1 : p = "KEY_MOUSE_1"; break; case KEY_MOUSE_2 : p = "KEY_MOUSE_2"; break; default : p = ""; break; } printf ("p = %2d, a = 0x%04x, c = 0x%04x, f = 0x%02x, asc = 0x%02x, key = %s\n", irmp_data.protocol, irmp_data.address, irmp_data.command, irmp_data.flags, key, p); } else { printf ("p = %2d, a = 0x%04x, c = 0x%04x, f = 0x%02x, asc = 0x%02x\n", irmp_data.protocol, irmp_data.address, irmp_data.command, irmp_data.flags, key); } } else { printf ("p = %2d, a = 0x%04x, c = 0x%04x, f = 0x%02x\n", irmp_data.protocol, irmp_data.address, irmp_data.command, irmp_data.flags); } } } } int main (int argc, char ** argv) { int i; int ch; int last_ch = 0; int pulse = 0; int pause = 0; int start_pulses[256]; int start_pauses[256]; int pulses[256]; int pauses[256]; int first_pulse = TRUE; int first_pause = TRUE; if (argc == 2) { if (! strcmp (argv[1], "-v")) { verbose = TRUE; } else if (! strcmp (argv[1], "-l")) { list = TRUE; } else if (! strcmp (argv[1], "-a")) { analyze = TRUE; } else if (! strcmp (argv[1], "-s")) { silent = TRUE; } else if (! strcmp (argv[1], "-p")) { print_timings (); return (0); } } for (i = 0; i < 256; i++) { start_pulses[i] = 0; start_pauses[i] = 0; pulses[i] = 0; pauses[i] = 0; } IRMP_PIN = 0xFF; while ((ch = getchar ()) != EOF) { if (ch == '_' || ch == '0') { if (last_ch != ch) { if (pause > 0) { if (list) { printf ("pause: %d\n", pause); } if (analyze) { if (first_pause) { if (pause < 256) { start_pauses[pause]++; } first_pause = FALSE; } else { if (pause < 256) { pauses[pause]++; } } } } pause = 0; } pulse++; IRMP_PIN = 0x00; } else if (ch == 0xaf || ch == '-' || ch == '1') { if (last_ch != ch) { if (list) { printf ("pulse: %d ", pulse); } if (analyze) { if (first_pulse) { if (pulse < 256) { start_pulses[pulse]++; } first_pulse = FALSE; } else { if (pulse < 256) { pulses[pulse]++; } } } pulse = 0; } pause++; IRMP_PIN = 0xff; } else if (ch == '\n') { IRMP_PIN = 0xff; if (list && pause > 0) { printf ("pause: %d\n", pause); } pause = 0; if (! analyze) { for (i = 0; i < (int) ((8000.0 * F_INTERRUPTS) / 10000); i++) // newline: long pause of 800 msec { next_tick (); } } first_pulse = TRUE; first_pause = TRUE; } else if (ch == '#') { if (analyze) { while ((ch = getchar()) != '\n' && ch != EOF) { ; } } else { puts ("-------------------------------------------------------------------"); putchar (ch); while ((ch = getchar()) != '\n' && ch != EOF) { if (ch != '\r') // ignore CR in DOS/Windows files { putchar (ch); } } putchar ('\n'); } } last_ch = ch; next_tick (); } if (analyze) { print_spectrum ("START PULSES", start_pulses, TRUE); print_spectrum ("START PAUSES", start_pauses, FALSE); print_spectrum ("PULSES", pulses, TRUE); print_spectrum ("PAUSES", pauses, FALSE); puts ("-------------------------------------------------------------------------------"); } return 0; } #endif // ANALYZE