/* * (C) Copyright 2014-2016 Leo C. * * SPDX-License-Identifier: GPL-2.0 */ #include "z180-serv.h" #include "common.h" #include #include #include #include #include "config.h" #include "background.h" #include "env.h" #include "ff.h" #include "serial.h" #include "z80-if.h" #include "debug.h" #include "print-utils.h" #include "timer.h" #include "time.h" #include "bcd.h" #include "rtc.h" #define DEBUG_CPM_SDIO 0 /* set to 1 to debug */ #define debug_cpmsd(fmt, args...) \ debug_cond(DEBUG_CPM_SDIO, fmt, ##args) /*--------------------------------------------------------------------------*/ struct msg_item { uint8_t fct; uint8_t sub_min, sub_max; void (*func)(uint8_t, int, uint8_t *); }; uint32_t msg_to_addr(uint8_t *msg) { union { uint32_t as32; uint8_t as8[4]; } addr; addr.as8[0] = msg[0]; addr.as8[1] = msg[1]; addr.as8[2] = msg[2]; addr.as8[3] = 0; return addr.as32; } static int msg_xmit_header(uint8_t func, uint8_t subf, int len) { z80_memfifo_putc(fifo_msgout, 0xAE); z80_memfifo_putc(fifo_msgout, len+2); z80_memfifo_putc(fifo_msgout, func); z80_memfifo_putc(fifo_msgout, subf); return 0; } int msg_xmit(uint8_t func, uint8_t subf, int len, uint8_t *msg) { msg_xmit_header(func, subf, len); while (len--) z80_memfifo_putc(fifo_msgout, *msg++); return 0; } void do_msg_ini_memfifo(uint8_t subf, int len, uint8_t * msg) { (void)len; z80_memfifo_init(subf, msg_to_addr(msg)); } void do_msg_char_out(uint8_t subf, int len, uint8_t * msg) { (void)subf; while (len--) putchar(*msg++); } /* echo message */ void do_msg_echo(uint8_t subf, int len, uint8_t * msg) { (void)subf; /* send re-echo */ msg_xmit(1, 3, len, msg); } /* get timer */ void do_msg_get_timer(uint8_t subf, int len, uint8_t * msg) { uint32_t time_ms = (len >= 4) ? *(uint32_t *) msg : 0; time_ms = get_timer(time_ms); msg_xmit(3, subf, sizeof(time_ms), (uint8_t *) &time_ms); } /* ---------------------------------------------------------------------------*/ #define CPM_DAY_OFFSET ((1978-1900) * 365 + 19) /* 19 leap years */ /* * Convert CP/M time stamp to a broken-down time structure * */ int mk_date_time (int len, uint8_t *msg, struct tm *tmp) { time_t stamp; if (len != 5) return -1; /* days since 2000-01-01 */ long days = msg[3] + (msg[4] << 8) - 8036; if (days < 0) return -1; stamp = days * ONE_DAY; stamp += bcd2bin(msg[0]); stamp += bcd2bin(msg[1]) * 60 ; stamp += bcd2bin(msg[2]) * 3600L; gmtime_r(&stamp, tmp); return 0; } void mk_cpm_time(struct tm *tmp, uint8_t cpm_time[5]) { uint16_t days = 1; uint_fast8_t leap=2; for (int year=78; year < tmp->tm_year; year++) { days = days + 365 + (leap == 0); leap = (leap+1)%4; } days += tmp->tm_yday; cpm_time[0] = bin2bcd(tmp->tm_sec); cpm_time[1] = bin2bcd(tmp->tm_min); cpm_time[2] = bin2bcd(tmp->tm_hour); cpm_time[3] = days; cpm_time[4] = days >> 8; } /* get/set cp/m time */ void do_msg_get_set_time(uint8_t subf, int len, uint8_t * msg) { struct tm t; uint8_t cpm_time[5]; int rc; memset(cpm_time, 0, ARRAY_SIZE(cpm_time)); switch (subf) { case 3: /* set date & time */ /* initialize t with current time */ rc = rtc_get (&t); if (rc >= 0) { /* insert new date & time */ if (mk_date_time (len, msg, &t) != 0) { my_puts_P(PSTR("## set_time: Bad date format\n")); break; } time_t time; time = mk_gmtime(&t); gmtime_r(&time, &t); /* and write to RTC */ rc = rtc_set (&t); if(rc) my_puts_P(PSTR("## set_time: Set date failed\n")); } else { my_puts_P(PSTR("## set_time: Get date failed\n")); } /* FALL TROUGH */ case 2: /* get date & time */ rc = rtc_get (&t); if (rc >= 0) { time_t time; time = mk_gmtime(&t); //mktime(&t); gmtime_r(&time, &t); mk_cpm_time(&t, cpm_time); } else { my_puts_P(PSTR("## get_time: Get date failed\n")); } break; } msg_xmit(3, subf, sizeof(cpm_time), cpm_time); } /* ---------------------------------------------------------------------------*/ static uint8_t drv; static uint8_t disk_buffer[CONFIG_CPM_BLOCK_SIZE]; static struct cpm_drive_s drv_table[CONFIG_CPM_MAX_DRIVE]; static int handle_cpm_drv_to; typedef enum {SINGLE, START, MIDDLE, END} dbgmsg_t; void drv_debug(dbgmsg_t phase, const FLASH char *const fmt, ...) \ { struct cpm_drive_s *dp = &drv_table[drv]; if (dp->opt & DRV_OPT_DEBUG) { va_list ap; va_start (ap, fmt); if (phase == SINGLE || phase == START) printf_P(PSTR("# %7lu dsk%d: "), get_timer(0), drv); vfprintf_P (stdout, fmt, ap); if (phase == SINGLE || phase == END) putc('\n', stdout); va_end (ap); } } int drv_list(void) { for (uint8_t i = 0; i < CONFIG_CPM_MAX_DRIVE; i++) { struct cpm_drive_s * p = &drv_table[i]; if (p->img_name) { printf_P(PSTR(" dsk%d: %2s %3s attached to %s\n"), i, p->opt&DRV_OPT_RO ? "RO":"RW", p->opt&DRV_OPT_DEBUG ? "DBG":"", p->img_name); } } return 0; } int drv_detach(uint8_t unit) { drv = unit; if (drv < CONFIG_CPM_MAX_DRIVE) { struct cpm_drive_s *p = &drv_table[drv]; drv_debug(SINGLE, PSTR("detach from '%s'"), p->img_name ? p->img_name : "-"); if (p->img_name) { f_close(&p->fd); free(p->img_name); p->opt = 0; p->flags &= ~DRV_FLG_DIRTY; p->img_name = NULL; uint32_t scb = getenv_ulong(PSTR(ENV_CPM3_SCB), 16, 0); if (scb && (z80_bus_cmd(Request) & ZST_ACQUIRED)) { z80_write(scb + 0xf0, 0xff); z80_write(p->dph + 11, 0xff); z80_bus_cmd(Release); } } } return 0; } static int drv_find_file_attached(const char *fn) { for (uint8_t i = 0; i < CONFIG_CPM_MAX_DRIVE; i++) { struct cpm_drive_s *p = &drv_table[i]; if (p->img_name && !strcmp(fn, p->img_name)) { return i; } } return -1; } int drv_attach(uint8_t unit, const char *filename, drv_opt_t options) { int res; drv = unit; if (drv >= CONFIG_CPM_MAX_DRIVE) return AT_RANGE; struct cpm_drive_s *p = &drv_table[drv]; if (options & DRV_OPT_REATTATCH) { if (filename) { return AT_ERROR; } if (!p->img_name) { return AT_NOT; } /* change options */ if ((p->opt ^ options) & DRV_OPT_RO) { f_close(&p->fd); res = f_open(&p->fd, p->img_name, FA_READ | (options&DRV_OPT_RO ? 0 : FA_WRITE)); } p->opt = options & ~DRV_OPT_REATTATCH; } else { if (p->img_name) return AT_ALREADY; if (drv_find_file_attached(filename) >= 0) return AT_OTHER; p->opt = options; /* new attachment */ if ((p->img_name = strdup(filename)) == NULL) return AT_NOMEM; res = f_open(&p->fd, p->img_name, FA_READ | (options&DRV_OPT_RO ? 0 : FA_WRITE)); if (!res && f_size(&p->fd) < CONFIG_CPM_DISKSIZE) { #if 0 unsigned int bw; debug_cpmsd(" expanding image file from %ld to %ld\n", f_size(&p->fd), CONFIG_CPM_DISKSIZE); res = f_lseek(&p->fd, CONFIG_CPM_DISKSIZE-CONFIG_CPM_BLOCK_SIZE); if (!res) { memset(disk_buffer, 0xe5, CONFIG_CPM_BLOCK_SIZE); res = f_write(&p->fd, disk_buffer, CONFIG_CPM_BLOCK_SIZE, &bw); if (res || bw < CONFIG_CPM_BLOCK_SIZE) { debug_cpmsd(" failed! res: %d, bytes written: %u\n", res, bw); } p->flags |= DRV_FLG_DIRTY; bg_setstat(handle_cpm_drv_to, 1); } #else drv_debug(SINGLE, PSTR("wrong image file size: %ld, should be %ld"), f_size(&p->fd), CONFIG_CPM_DISKSIZE); res = 64; #endif } if (res) { drv_detach(drv); return AT_OPEN; } } return AT_OK; } int cpm_drv_to(int state) { static uint32_t ts; switch(state) { case 0: break; case 1: ts = get_timer(0); state = 2; break; case 2: if (get_timer(ts) > 1000) { for (uint_fast8_t i=0; i < CONFIG_CPM_MAX_DRIVE; i++) { if (drv_table[i].flags & DRV_FLG_DIRTY) { drv_table[i].flags &= ~DRV_FLG_DIRTY; f_sync(&drv_table[i].fd); drv = i; drv_debug(SINGLE, PSTR("f_sync")); } } state = 0; } } return state; } static const FLASH char * const FLASH rc_messages[] = { FSTR("OK"), FSTR("Internal error: wrong message len"), /* 01 */ FSTR("Invalid relative drive #"), /* 02 */ FSTR("Bus timeout"), /* 03 */ FSTR("Access byond disk size"), /* 04 */ FSTR("Write protect"), /* 05 */ FSTR("No media"), /* 06 */ FSTR("R/W address == 0 !!!!"), /* 07 */ }; void msg_cpm_result(uint8_t subf, uint8_t rc, int res) { uint8_t result_msg[3]; if (res) rc |= 0x80; result_msg[0] = rc; result_msg[1] = res; result_msg[2] = res >> 8; msg_xmit(2, subf, sizeof(result_msg), result_msg); if (rc) { #if GCC_BUG_61443 char msg[40]; strncpy_P(msg, rc_messages[rc & 0x7f], sizeof msg -1); drv_debug(END, PSTR(" rc: %.02x/%d, '%s'"), rc, res, msg); #else drv_debug(END, PSTR(" rc: %.02x/%d, '%S'"), rc, res, rc_messages[rc & 0x7f]); #endif } else drv_debug(END, PSTR("")); } /* db 2 ; disk command ds 1 ; subcommand (login/read/write) ds 1 ; @adrv (8 bits) +0 ds 1 ; @rdrv (8 bits) +1 ds 3 ; @xdph (24 bits) +2 */ void do_msg_cpm_login(uint8_t subf, int len, uint8_t * msg) { struct cpm_drive_s *dp; FRESULT res = 0; (void)subf; /* Get relative drive number */ drv = msg[1]; drv_debug(START, PSTR("login")); if (len != 5) { return msg_cpm_result(subf, 0x01, res); } if ( drv >= CONFIG_CPM_MAX_DRIVE) { /* invalid relative drive number */ return msg_cpm_result(subf, 0x02, res); } dp = &drv_table[drv]; dp->flags &= ~DRV_FLG_OPEN; dp->dph = ((uint32_t)msg[4] << 16) + ((uint16_t)msg[3] << 8) + msg[2]; if (dp->img_name == NULL) { /* no file attached */ return msg_cpm_result(subf, 0x06, res); } f_close(&dp->fd); res = f_open(&dp->fd, dp->img_name, FA_READ | (dp->opt&DRV_OPT_RO ? 0 : FA_WRITE)); dp->flags |= DRV_FLG_OPEN; /* send result*/ msg_cpm_result(subf, 0x00, res); } /* db 2 ; disk command ds 1 ; subcommand (login/read/write) ds 1 ; @adrv (8 bits) +0 ds 1 ; @rdrv (8 bits) +1 ds 2 ; @trk (16 bits) +2 ds 2 ; @sect(16 bits) +4 ds 1 ; @cnt (8 bits) +6 ds 3 ; phys. transfer addr +7 */ #define ADRV 0 #define RDRV 1 #define TRK 2 #define SEC 4 #define CNT 6 #define ADDR 7 void do_msg_cpm_rw(uint8_t subf, int len, uint8_t * msg) { struct cpm_drive_s *dp; uint32_t addr; uint32_t pos; uint16_t track; uint16_t sec; uint8_t secs; bool dowrite; FRESULT res = 0; uint8_t rc = 0; bool buserr = 0; drv = msg[RDRV]; dowrite = (subf == 2); drv_debug(START, PSTR("%2S"), dowrite ? PSTR("W ") : PSTR(" R")); if (len != 10) { return msg_cpm_result(subf, 0x01, res); } if ( drv>= CONFIG_CPM_MAX_DRIVE) { return msg_cpm_result(subf, 0x02, res); } dp = &drv_table[drv]; track = (uint16_t)(msg[TRK+1] << 8) + msg[TRK]; sec = (uint16_t)(msg[SEC+1] << 8) + msg[SEC]; secs = msg[CNT]; addr = ((uint32_t)msg[ADDR+2] << 16) + ((uint16_t)msg[ADDR+1] << 8) + msg[ADDR]; if (dp->img_name == NULL) { /* no media */ return msg_cpm_result(subf, 0x06, res); } /* TODO: tracks per sector from dpb */ pos = (track * 8UL + sec) * CONFIG_CPM_BLOCK_SIZE; drv_debug(MIDDLE, PSTR(" T:%4d, S:%2d, cnt:%2d, lba: %.8lx, addr: %.5lx"), track, sec, secs, pos, addr); if (addr == 0) { return msg_cpm_result(subf, 0x07, res); } if (dowrite && dp->opt & DRV_OPT_RO) { return msg_cpm_result(subf, 0x05, res); } if (pos + secs * CONFIG_CPM_BLOCK_SIZE > CONFIG_CPM_DISKSIZE) { drv_debug(MIDDLE, PSTR(" access > DISKSIZE:%.8lx!"), CONFIG_CPM_DISKSIZE); return msg_cpm_result(subf, 0x04, res); } res = f_lseek(&dp->fd, pos); while (!res && secs--) { unsigned int brw; if (dowrite) { if (!(z80_bus_cmd(Request) & ZST_ACQUIRED)) { buserr = 1; break; } else { z80_read_block(disk_buffer, addr, CONFIG_CPM_BLOCK_SIZE); z80_bus_cmd(Release); } res = f_write(&dp->fd, disk_buffer, CONFIG_CPM_BLOCK_SIZE, &brw); } else { res = f_read(&dp->fd, disk_buffer, CONFIG_CPM_BLOCK_SIZE, &brw); if (res == FR_OK) { if (!(z80_bus_cmd(Request) & ZST_ACQUIRED)) { buserr = 1; break; } else { z80_write_block(disk_buffer, addr, CONFIG_CPM_BLOCK_SIZE); z80_bus_cmd(Release); } } } if (brw != CONFIG_CPM_BLOCK_SIZE) { drv_debug(MIDDLE, PSTR(" short rd/wr: res: %d, brw: %u"), res, brw); res = 64; } addr += CONFIG_CPM_BLOCK_SIZE; } if (dowrite && !res) { dp->flags |= DRV_FLG_DIRTY; bg_setstat(handle_cpm_drv_to, 1); } if (buserr) { /* Bus timeout. how can this happen? */ rc = 0x03; } /* send result*/ msg_cpm_result(subf, rc, res); } const FLASH struct msg_item z80_messages[] = { { 0, /* fct nr. */ 1, 3, /* sub fct nr. from, to */ do_msg_ini_memfifo}, { 1, 1, 1, do_msg_char_out}, { 1, 2, 2, do_msg_echo}, { 2, 0, 0, do_msg_cpm_login}, { 2, 1, 2, do_msg_cpm_rw}, { 3, 1, 1, do_msg_get_timer}, { 3, 2, 3, /* 2: get, 3: set time and date */ do_msg_get_set_time}, { 0xff, /* end mark */ 0, 0, 0}, }; void do_message(int len, uint8_t *msg) { uint8_t fct, sub_fct; int_fast8_t i = 0; if (len >= 2) { fct = *msg++; sub_fct = *msg++; len -= 2; while (fct != z80_messages[i].fct) { if (z80_messages[i].fct == 0xff) { DBG_P(1, "do_message: Unknown function: %i, %i\n", fct, sub_fct); return; /* TODO: unknown message # */ } ++i; } while (fct == z80_messages[i].fct) { if (sub_fct >= z80_messages[i].sub_min && sub_fct <= z80_messages[i].sub_max ) break; ++i; } if (z80_messages[i].fct != fct) { DBG_P(1, "do_message: Unknown sub function: %i, %i\n", fct, sub_fct); return; /* TODO: unknown message sub# */ } (z80_messages[i].func)(sub_fct, len, msg); } else { /* TODO: error */ DBG_P(1, "do_message: to few arguments (%i); this shouldn't happen!\n", len); } } #define CTRBUF_LEN 256 void check_msg_fifo(void) { int ch; static int_fast8_t state; static int msglen,idx; static uint8_t buffer[CTRBUF_LEN]; while ((ch = z80_memfifo_getc(fifo_msgin)) >= 0) { switch (state) { case 0: /* wait for start of message */ if (ch == 0xAE) { /* TODO: magic number */ msglen = 0; idx = 0; state = 1; } break; case 1: /* get msg len */ if (ch > 0 && ch <= CTRBUF_LEN) { msglen = ch; state = 2; } else state = 0; break; case 2: /* get message */ buffer[idx++] = ch; if (idx == msglen) { do_message(msglen, buffer); state = 0; } break; } } } int msg_handling(int state) { bool pending; ATOMIC_BLOCK(ATOMIC_FORCEON) { pending = (Stat & S_MSG_PENDING) != 0; Stat &= ~S_MSG_PENDING; } if (pending) { uint8_t init_request; z80_bus_cmd(Request); init_request = z80_read(0x43); z80_bus_cmd(Release); if ( init_request != 0) { /* Get address of fifo 0 */ z80_bus_cmd(Request); uint32_t fifo_addr = z80_read(0x40) + ((uint16_t) z80_read(0x40+1) << 8) + ((uint32_t) z80_read(0x40+2) << 16); z80_write(0x43, 0); z80_bus_cmd(Release); if (fifo_addr != 0) { z80_memfifo_init(fifo_msgin, fifo_addr); state = 1; } else state = 0; } else { check_msg_fifo(); } } return state; } static int handle_msg_handling; void setup_z180_serv(void) { handle_msg_handling = bg_register(msg_handling, 0); handle_cpm_drv_to = bg_register(cpm_drv_to, 0); } void restart_z180_serv(void) { z80_bus_cmd(Request); z80_memset(0x40, 0, 4); z80_bus_cmd(Release); for (int i = 0; i < NUM_FIFOS; i++) z80_memfifo_init(i, 0); bg_setstat(handle_msg_handling, 0); } #if 0 /*--------------------------------------------------------------------------*/ const FLASH uint8_t iniprog[] = { 0xAF, // xor a 0xED, 0x39, 0x36, // out0 (rcr),a ;disable DRAM refresh 0x3E, 0x30, // ld a,030h 0xED, 0x39, 0x32 //out0 (dcntl),a ;0 mem, max i/0 wait states }; const FLASH uint8_t sertest[] = { 0xAF, // xor a 0xED, 0x39, 0x36, // out0 (rcr),a ;disable DRAM refresh 0x3E, 0x30, // ld a,030h 0xED, 0x39, 0x32, // out0 (dcntl),a ;0 mem, max i/0 wait states 0x3E, 0x80, // ld a,M_MPBT ;no MP, PS=10, DR=16, SS=0 0xED, 0x39, 0x03, // out0 (cntlb1),a 0x3E, 0x64, // ld a,M_RE + M_TE + M_MOD2 ; 0xED, 0x39, 0x01, // out0 (cntla1),a 0x3E, 0x00, // ld a,0 0xED, 0x39, 0x05, // out0 (stat1),a ;Enable rx interrupts 0xED, 0x38, 0x05, //l0:in0 a,(stat1) 0xE6, 0x80, // and 80h 0x28, 0xF9, // jr z,l0 0xED, 0x00, 0x09, // in0 b,(rdr1) 0xED, 0x38, 0x05, //l1:in0 a,(stat1) 0xE6, 0x02, // and 02h 0x28, 0xF9, // jr z,l1 0xED, 0x01, 0x07, // out0 (tdr1),b 0x18, 0xEA, // jr l0 }; const FLASH uint8_t test1[] = { 0xAF, // xor a 0xED, 0x39, 0x36, // out0 (rcr),a ;disable DRAM refresh 0x3E, 0x30, // ld a,030h 0xED, 0x39, 0x32, // out0 (dcntl),a ;0 mem, max i/0 wait states 0x21, 0x1E, 0x00, // ld hl,dmclrt ;load DMA registers 0x06, 0x08, // ld b,dmct_e-dmclrt 0x0E, 0x20, // ld c,sar0l 0xED, 0x93, // otimr 0x3E, 0xC3, // ld a,0c3h ;dst +1, src +1, burst 0xED, 0x39, 0x31, // out0 (dmode),a ; 0x3E, 0x62, // ld a,062h ;enable dma0, 0xED, 0x39, 0x30, //cl_1: out0 (dstat),a ;copy 64k 0x18, 0xFB, // jr cl_1 ; 0x00, 0x00, //dmclrt: dw 0 ;src (inc) 0x00, // db 0 ;src 0x00, 0x00, // dw 0 ;dst (inc), 0x00, // db 0 ;dst 0x00, 0x00, // dw 0 ;count (64k) }; #endif