summaryrefslogtreecommitdiff
path: root/avr/cmd_boot.c
blob: 1f99f2d65c7e8dcbef0bb76ff7d65c802e88c980 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*
 * Misc boot support
 */
#include "common.h"
#include <stdlib.h>
#include <util/atomic.h>

#include "command.h"
#include "con-utils.h"
#include "z80-if.h"
#include "z180-serv.h"
//#include "debug.h"

/* ugly hack to get Z180 loadfile into flash memory */
#define const const FLASH
#include "../z180/hdrom.h"
#undef const



static void z80_load_mem(void)
{
	unsigned sec = 0;
	uint32_t sec_base = hdrom_start;

	printf_P(PSTR("Loading Z180 memory... \n"));

	while (sec < hdrom_sections) {
		printf_P(PSTR("   From: 0x%.5lX to: 0x%.5lX    (%5li bytes)\n"),
				hdrom_address[sec],
				hdrom_address[sec]+hdrom_length_of_sections[sec] - 1,
				hdrom_length_of_sections[sec]);

		z80_bus_cmd(Request);
		z80_write_block((const FLASH unsigned char *) &hdrom[sec_base],  /* src */
				hdrom_address[sec],                  /* dest */
				hdrom_length_of_sections[sec]);      /* len */
		z80_bus_cmd(Release);
		sec_base+=hdrom_length_of_sections[sec];
		sec++;
	}
}

command_ret_t do_loadf(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	(void) cmdtp; (void) flag; (void) argc; (void) argv;

	if (z80_bus_state() & ZST_RUNNING) {
		printf_P(PSTR("## Can't load while CPU is running!\n"));
		return CMD_RET_FAILURE;
	}

	z80_load_mem();

	return CMD_RET_SUCCESS;
}


command_ret_t do_busreq_pulse(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	uint16_t count=1;

	(void) cmdtp; (void) flag;

	if (!(z80_bus_state() & ZST_RUNNING)) {
		printf_P(PSTR("## CPU is not running!\n"));
		return CMD_RET_FAILURE;
	}

	if (argc > 1)
		count = (uint16_t) strtoul(argv[2], NULL, 16);

	z80_bus_cmd(Request);
	while (count--)
		z80_bus_cmd(M_Cycle);

	return CMD_RET_SUCCESS;
}


command_ret_t do_go(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	uint32_t addr;

	(void) cmdtp; (void) flag;

	if (argc < 2)
		return CMD_RET_USAGE;
	addr = strtoul(argv[1], NULL, 16);
	if (addr >= (1UL<<16)) {
		printf_P(PSTR("## Startaddress 0x%05lx too high.\n"
			"   (Out of logical address space (0x00000-0x0ffff))\n"),
			addr);
		return CMD_RET_FAILURE;
	}

	if (z80_bus_state() & ZST_RUNNING) {
		printf_P(PSTR("## CPU allready running!\n"));
		return CMD_RET_FAILURE;
	}

	printf_P(PSTR("## Starting application at 0x%04lx ...\n"), addr);

	if (addr != 0) {
		uint8_t tmp[3];
		uint_fast8_t i;

		z80_bus_cmd(Request);
		for (i = 0; i < 3; i++)
			tmp[i] = z80_read(i);
		z80_write(0, 0xc3);
		z80_write(1, addr);
		z80_write(2, (addr >> 8));

		z80_bus_cmd(Run);
		z80_bus_cmd(M_Cycle);
		z80_bus_cmd(M_Cycle);
		for (i = 0; i < 3; i++)
			z80_write(i, tmp[i]);
	} else
		z80_bus_cmd(Run);

	z80_bus_cmd(Release);

	return CMD_RET_SUCCESS;
}

command_ret_t do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	(void) cmdtp; (void) flag; (void) argc; (void) argv;

	printf_P(PSTR("## CPU now in reset state.\n"));

	restart_z180_serv();
	z80_bus_cmd(Reset);
	return CMD_RET_SUCCESS;
}

command_ret_t do_restart(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	(void) cmdtp; (void) flag; (void) argc; (void) argv;

	restart_z180_serv();
	z80_bus_cmd(Restart);

	return CMD_RET_SUCCESS;
}


command_ret_t do_console(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	int ch;
	uint8_t pending, state = 0;
	
	(void) cmdtp; (void) flag; (void) argc; (void) argv;


	while (1) {

		ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
			pending = (Stat & S_CON_PENDING) != 0;
			Stat &= ~S_CON_PENDING;
		}
		if (pending)
			while ((ch = z80_memfifo_getc(fifo_conout)) >= 0)
				putchar(ch);

		if ((ch = my_getchar(0)) >= 0) {
			switch (state) {
			case 0:
				if (ch == CONFIG_ESC_CHAR) {
					state = 1;
					/* TODO: Timer starten */
				} else {
					z80_memfifo_putc(fifo_conin, ch);
//					serial_putc(ch);
//					if (ch == '\r')
//						serial_putc('\n');
				}	
				break;
			case 1:
				switch (ch) {

				case 'r':
//					z80_reset_pulse();
					break;

				case 'b':
					break;

				case 'e':
					break;

				case 'q':
				case 'Q':
					printf_P(PSTR("\n"));
					goto quit;
					break;

				case CONFIG_ESC_CHAR:
				default:
					z80_memfifo_putc(fifo_conin, ch);
//					serial_putc(ch);
//					if (ch == '\r')
//						serial_putc('\n');
				}
				state = 0;
				break;
			}
		}

	}
quit:

	return CMD_RET_SUCCESS;
}