summaryrefslogtreecommitdiff
path: root/avr/cmd_boot.c
blob: 3e2dcdb103281709a383072138f7329ba75a9821 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
 * Misc boot support
 */
#include "common.h"
#include <stdlib.h>
#include <util/delay.h>
#include <avr/pgmspace.h>

#include "command.h"
#include "z80-if.h"

/* ugly hack to get Z180 loadfile into flash memory */
#define const const FLASH
#include "../z180/hdrom.h"
#undef const



static void z80_load_mem(void)
{
	unsigned sec = 0;
	uint32_t sec_base = hdrom_start;

	printf_P(PSTR("Loading Z180 memory... \n"));

	while (sec < hdrom_sections) {
		printf_P(PSTR("   From: 0x%.5lX to: 0x%.5lX    (%5li bytes)\n"),
				hdrom_address[sec],
				hdrom_address[sec]+hdrom_length_of_sections[sec] - 1,
				hdrom_length_of_sections[sec]);

		z80_bus_cmd(Request);
		z80_write_block((const FLASH unsigned char *) &hdrom[sec_base],  /* src */
		                hdrom_address[sec],                  /* dest */
				hdrom_length_of_sections[sec]);      /* len */
		z80_bus_cmd(Release);
		sec_base+=hdrom_length_of_sections[sec];
		sec++;
	}
}

command_ret_t do_loadf(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	(void) cmdtp; (void) flag; (void) argc; (void) argv;

	if (z80_bus_state() & ZST_RUNNING) {	
		printf_P(PSTR("## Can't load while CPU is running!\n"));
		return CMD_RET_FAILURE;	
	}

	z80_load_mem();
	
	return CMD_RET_SUCCESS;
}


command_ret_t do_busreq_pulse(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	uint16_t count=1;

	(void) cmdtp; (void) flag;

	if (!(z80_bus_state() & ZST_RUNNING)) {	
		printf_P(PSTR("## CPU is not running!\n"));
		return CMD_RET_FAILURE;
	}

	if (argc > 1)
		count = (uint16_t) strtoul(argv[2], NULL, 16);

	z80_bus_cmd(Request);
	while (count--)
		z80_bus_cmd(M_Cycle);

	return CMD_RET_SUCCESS;
}


command_ret_t do_go(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	uint32_t addr;

	(void) cmdtp; (void) flag;
	
	if (argc < 2)
		return CMD_RET_USAGE;
	addr = strtoul(argv[1], NULL, 16);
	if (addr >= (1UL<<16)) {
		printf_P(PSTR("## Startaddress 0x%05lx too high.\n"
			"   (Out of logical address space (0x00000-0x0ffff))\n"),
			addr);
		return CMD_RET_FAILURE;
	} 

	if (z80_bus_state() & ZST_RUNNING) {	
		printf_P(PSTR("## CPU allready running!\n"));
		return CMD_RET_FAILURE;
	}

	printf_P(PSTR("## Starting application at 0x%04lx ...\n"), addr);

	if (addr != 0) {
		uint8_t tmp[3];
		uint_fast8_t i;
		
		z80_bus_cmd(Request);
		for (i = 0; i < 3; i++)
			tmp[i] = z80_read(i);
		z80_write(0, 0xc3);
		z80_write(1, addr);
		z80_write(2, (addr >> 8));

		z80_bus_cmd(Run);
		z80_bus_cmd(M_Cycle);
		z80_bus_cmd(M_Cycle);
		for (i = 0; i < 3; i++)
			z80_write(i, tmp[i]);
	} else
		z80_bus_cmd(Run);
		
	z80_bus_cmd(Release);

	return CMD_RET_SUCCESS;
}

command_ret_t do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	(void) cmdtp; (void) flag; (void) argc; (void) argv;

	printf_P(PSTR("## CPU now in reset state.\n"));

	z80_bus_cmd(Reset);
	return CMD_RET_SUCCESS;
}

command_ret_t do_restart(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	(void) cmdtp; (void) flag; (void) argc; (void) argv;

	z80_bus_cmd(Restart);

	return CMD_RET_SUCCESS;
}