]> cloudbase.mooo.com Git - z180-stamp.git/blob - avr/cmd_mem.c
One dump_mem() for all memory types (avr eeprom and ram, z180 ram)
[z180-stamp.git] / avr / cmd_mem.c
1 /*
2 * (C) Copyright 2000
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * Memory Functions
10 *
11 * Copied from FADS ROM, Dan Malek (dmalek@jlc.net)
12 */
13
14 #include "common.h"
15 #include <stdlib.h>
16 #include <ctype.h>
17
18 #include "command.h"
19 #include "cli_readline.h"
20 #include "print-utils.h"
21 #include "con-utils.h"
22 #include "z80-if.h"
23 //#include "debug.h"
24
25
26 #ifndef CONFIG_SYS_MEMTEST_SCRATCH
27 #define CONFIG_SYS_MEMTEST_SCRATCH 0
28 #endif
29
30 /* Display values from last command.
31 * Memory modify remembered values are different from display memory.
32 */
33 static uint32_t dp_last_addr;
34 static uint32_t dp_last_length = 0x100;
35 static uint32_t mm_last_addr;
36
37 static uint32_t base_address = 0;
38
39 /*--------------------------------------------------------------------------*/
40
41
42 void z180_read_buf(uint8_t *buf, uint32_t addr, uint8_t count)
43 {
44 z80_bus_cmd(Request);
45 while (count--)
46 *buf++ = z80_read(addr++);
47 z80_bus_cmd(Release);
48 }
49
50 /*--------------------------------------------------------------------------*/
51
52 /* Memory Display
53 *
54 * Syntax:
55 * md {addr} {len}
56 */
57 command_ret_t do_mem_md(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
58 {
59 uint32_t addr, length;
60
61 (void) cmdtp;
62
63 #if 0
64 printf_P(PSTR("flag: %d, argc: %d"), flag, argc);
65 for (int i = 0; i < argc; i++) {
66 printf_P(PSTR(", argv[%d]: %s"), i, argv[i] ? argv[i] : "<NULL>");
67 }
68 putchar('\n');
69 #endif
70
71 /* We use the last specified parameters, unless new ones are
72 * entered.
73 */
74 addr = dp_last_addr;
75 length = dp_last_length;
76
77 if (argc < 2)
78 return CMD_RET_USAGE;
79
80 if ((flag & CMD_FLAG_REPEAT) == 0) {
81 /* Address is specified since argc > 1 */
82 addr = strtoul(argv[1], NULL, 16);
83 addr += base_address;
84
85 /* If another parameter, it is the length to display. */
86 if (argc > 2)
87 length = strtoul(argv[2], NULL, 16);
88 }
89
90 /* Print the lines. */
91 dump_mem(addr, length, z180_read_buf, NULL);
92
93 dp_last_addr = addr + length;
94 dp_last_length = length;
95 return CMD_RET_SUCCESS;
96 }
97
98 /* Modify memory.
99 *
100 * Syntax:
101 * mm {addr}
102 * nm {addr}
103 */
104 static command_ret_t
105 mod_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
106 {
107 uint32_t addr;
108 uint8_t data;
109 int nbytes;
110
111 (void) cmdtp;
112
113 if (argc != 2)
114 return CMD_RET_USAGE;
115
116 /* We use the last specified parameters, unless new ones are
117 * entered.
118 */
119 addr = mm_last_addr;
120
121 if ((flag & CMD_FLAG_REPEAT) == 0) {
122 /* New command specified.
123 */
124
125 /* Address is specified since argc > 1
126 */
127 addr = strtoul(argv[1], NULL, 16);
128 addr += base_address;
129 }
130
131 /* Print the address, followed by value. Then accept input for
132 * the next value. A non-converted value exits.
133 */
134 do {
135 z80_bus_cmd(Request);
136 data = z80_read(addr);
137 printf_P(PSTR("%05lx: %02x"), addr, data);
138 z80_bus_cmd(Release);
139
140 nbytes = cli_readline(PSTR(" ? "));
141 if (nbytes == 0 || (nbytes == 1 && console_buffer[0] == '-')) {
142 /* <CR> pressed as only input, don't modify current
143 * location and move to next. "-" pressed will go back.
144 */
145 if (incrflag)
146 addr += nbytes ? -1 : 1;
147 nbytes = 1;
148 }
149 else {
150 char *endp;
151 data = strtoul(console_buffer, &endp, 16);
152 nbytes = endp - console_buffer;
153 if (nbytes) {
154 z80_bus_cmd(Request);
155 z80_write(addr, data);
156 z80_bus_cmd(Release);
157 if (incrflag)
158 addr++;
159 }
160 }
161 } while (nbytes);
162
163 mm_last_addr = addr;
164 return CMD_RET_SUCCESS;
165 }
166
167
168 command_ret_t do_mem_mm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
169 {
170 return mod_mem (cmdtp, 1, flag, argc, argv);
171 }
172 command_ret_t do_mem_nm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
173 {
174 return mod_mem (cmdtp, 0, flag, argc, argv);
175 }
176
177 command_ret_t do_mem_mw(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
178 {
179 uint8_t writeval;
180 uint32_t addr, count;
181
182 (void) cmdtp;
183 (void) flag;
184
185 if ((argc < 3) || (argc > 4))
186 return CMD_RET_USAGE;
187
188 /* Address is specified since argc > 1
189 */
190 addr = strtoul(argv[1], NULL, 16);
191 addr += base_address;
192
193 /* Get the value to write.
194 */
195 writeval = (uint8_t) strtoul(argv[2], NULL, 16);
196
197 /* Count ? */
198 if (argc == 4) {
199 count = strtoul(argv[3], NULL, 16);
200 } else {
201 count = 1;
202 }
203
204 z80_bus_cmd(Request);
205 while (count-- > 0) {
206 z80_write(addr, writeval);
207 ++addr;
208 }
209 z80_bus_cmd(Release);
210
211 return CMD_RET_SUCCESS;
212 }
213
214 #ifdef CONFIG_MX_CYCLIC
215 command_ret_t do_mem_mdc ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
216 {
217 int i;
218 uint32_t count;
219
220 if (argc < 4)
221 return CMD_RET_USAGE;
222
223 count = strtoul(argv[3], NULL, 10);
224
225 for (;;) {
226 do_mem_md (NULL, 0, 3, argv);
227
228 /* delay for <count> ms... */
229 /* TODO: use timer */
230 for (i=0; i<count; i++)
231 udelay (1000);
232
233 /* check for ctrl-c to abort... */
234 if (ctrlc()) {
235 my_puts_P(PSTR("Abort\n"));
236 return CMD_RET_SUCCESS;
237 }
238 }
239
240 return CMD_RET_SUCCESS;
241 }
242
243 command_ret_t do_mem_mwc ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
244 {
245 int i;
246 uint32_t count;
247
248 if (argc < 4)
249 return CMD_RET_USAGE;
250
251 count = strtoul(argv[3], NULL, 10);
252
253 for (;;) {
254 do_mem_mw (NULL, 0, 3, argv);
255
256 /* delay for <count> ms... */
257 /* TODO: use timer */
258 for (i=0; i<count; i++)
259 udelay (1000);
260
261 /* check for ctrl-c to abort... */
262 if (ctrlc()) {
263 my_puts_P(PSTR("Abort\n"));
264 return CMD_RET_SUCCESS;
265 }
266 }
267
268 return CMD_RET_SUCCESS;
269 }
270 #endif /* CONFIG_MX_CYCLIC */
271
272 command_ret_t do_mem_cmp(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
273 {
274 uint32_t addr1, addr2, count, ngood;
275 command_ret_t rcode = CMD_RET_SUCCESS;
276 uint8_t byte1, byte2;
277
278 (void) cmdtp;
279 (void) flag;
280
281 if (argc != 4)
282 return CMD_RET_USAGE;
283
284
285 addr1 = strtoul(argv[1], NULL, 16);
286 addr1 += base_address;
287 addr2 = strtoul(argv[2], NULL, 16);
288 addr2 += base_address;
289 count = strtoul(argv[3], NULL, 16);
290
291 for (ngood = 0; ngood < count; ++ngood) {
292 z80_bus_cmd(Request);
293 byte1 = z80_read(addr1);
294 byte2 = z80_read(addr2);
295 z80_bus_cmd(Release);
296 if (byte1 != byte2) {
297 printf_P(PSTR("byte at 0x%05lx (%#02x) != "
298 "byte at 0x%05lx (%#02x)\n"),
299 addr1, byte1, addr2, byte2);
300 rcode = CMD_RET_FAILURE;
301 break;
302 }
303 addr1++;
304 addr2++;
305
306 /* check for ctrl-c to abort... */
307 if (ctrlc()) {
308 my_puts_P(PSTR("Abort\n"));
309 return CMD_RET_SUCCESS;
310 }
311 }
312
313 printf_P(PSTR("Total of %ld byte(s) (0x%lx) were the same\n"), ngood, ngood);
314 return rcode;
315 }
316
317 command_ret_t do_mem_cp(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
318 {
319 uint32_t src, dest, count;
320 int_fast8_t step;
321
322 (void) cmdtp;
323 (void) flag;
324
325 if (argc != 4)
326 return CMD_RET_USAGE;
327
328 src = strtoul(argv[1], NULL, 16);
329 src += base_address;
330 dest = strtoul(argv[2], NULL, 16);
331 dest += base_address;
332 count = strtoul(argv[3], NULL, 16);
333
334 if (count == 0) {
335 my_puts_P(PSTR("Zero length?\n"));
336 return CMD_RET_FAILURE;
337 }
338
339 if (dest > src) {
340 src += count - 1;
341 dest += count - 1;
342 step = -1;
343 } else
344 step = 1;
345
346 while (count-- > 0) {
347 uint8_t data;
348 z80_bus_cmd(Request);
349 data = z80_read(src);
350 z80_write(dest, data);
351 z80_bus_cmd(Release);
352 src += step;
353 dest += step;
354
355 /* check for ctrl-c to abort... */
356 if (ctrlc()) {
357 my_puts_P(PSTR("Abort\n"));
358 return CMD_RET_SUCCESS;
359 }
360 }
361 return CMD_RET_SUCCESS;
362 }
363
364 command_ret_t do_mem_base(cmd_tbl_t *cmdtp, int flag, int argc,
365 char * const argv[])
366 {
367 (void) cmdtp;
368 (void) flag;
369
370 if (argc > 1) {
371 /* Set new base address. */
372 base_address = strtoul(argv[1], NULL, 16);
373 }
374 /* Print the current base address. */
375 printf_P(PSTR("Base Address: 0x%05lx\n"), base_address);
376 return CMD_RET_SUCCESS;
377 }
378
379 command_ret_t do_mem_loop(cmd_tbl_t *cmdtp, int flag, int argc,
380 char * const argv[])
381 {
382 uint32_t addr, length;
383
384 (void) cmdtp;
385 (void) flag;
386
387 if (argc < 3)
388 return CMD_RET_USAGE;
389
390 /* Address is always specified. */
391 addr = strtoul(argv[1], NULL, 16);
392
393 /* Length is the number of bytes. */
394 length = strtoul(argv[2], NULL, 16);
395
396
397 /* We want to optimize the loops to run as fast as possible.
398 * If we have only one object, just run infinite loops.
399 */
400 if (length == 1) {
401 z80_bus_cmd(Request);
402 for (;;)
403 z80_read(addr);
404 z80_bus_cmd(Release);
405 }
406
407 z80_bus_cmd(Request);
408 for (;;) {
409 uint32_t i = length;
410 uint32_t p = addr;
411 while (i-- > 0)
412 z80_read(p++);
413 }
414 z80_bus_cmd(Release);
415
416 return CMD_RET_SUCCESS;
417 }
418
419 #ifdef CONFIG_LOOPW
420 command_ret_t do_mem_loopw (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
421 {
422 uint32_t addr, length;
423 uint8_t data;
424
425 (void) cmdtp;
426 (void) flag;
427
428 if (argc < 4)
429 return CMD_RET_USAGE;
430
431 /* Address is always specified. */
432 addr = strtoul(argv[1], NULL, 16);
433
434 /* Length is the number of bytes. */
435 length = strtoul(argv[2], NULL, 16);
436
437 data = strtoul(argv[3], NULL, 16);
438
439 /* We want to optimize the loops to run as fast as possible.
440 * If we have only one object, just run infinite loops.
441 */
442 if (length == 1) {
443 z80_bus_cmd(Request);
444 for (;;)
445 z80_write(addr, data);
446 }
447
448 for (;;) {
449 uint32_t i = length;
450 uint32_t p = addr;
451 while (i-- > 0)
452 z80_write(p++, data);
453 }
454 }
455 #endif /* CONFIG_LOOPW */
456
457 #ifdef CONFIG_CMD_MEMTEST
458 static uint32_t mem_test_alt(vu_long *buf, uint32_t start_addr, uint32_t end_addr,
459 vu_long *dummy)
460 {
461 vu_long *addr;
462 uint32_t errs = 0;
463 uint32_t val, readback;
464 int j;
465 vu_long offset;
466 vu_long test_offset;
467 vu_long pattern;
468 vu_long temp;
469 vu_long anti_pattern;
470 vu_long num_words;
471 static const FLASH uint32_t bitpattern[] = {
472 0x00000001, /* single bit */
473 0x00000003, /* two adjacent bits */
474 0x00000007, /* three adjacent bits */
475 0x0000000F, /* four adjacent bits */
476 0x00000005, /* two non-adjacent bits */
477 0x00000015, /* three non-adjacent bits */
478 0x00000055, /* four non-adjacent bits */
479 0xaaaaaaaa, /* alternating 1/0 */
480 };
481
482 num_words = (end_addr - start_addr) / sizeof(vu_long);
483
484 /*
485 * Data line test: write a pattern to the first
486 * location, write the 1's complement to a 'parking'
487 * address (changes the state of the data bus so a
488 * floating bus doesn't give a false OK), and then
489 * read the value back. Note that we read it back
490 * into a variable because the next time we read it,
491 * it might be right (been there, tough to explain to
492 * the quality guys why it prints a failure when the
493 * "is" and "should be" are obviously the same in the
494 * error message).
495 *
496 * Rather than exhaustively testing, we test some
497 * patterns by shifting '1' bits through a field of
498 * '0's and '0' bits through a field of '1's (i.e.
499 * pattern and ~pattern).
500 */
501 addr = buf;
502 for (j = 0; j < sizeof(bitpattern) / sizeof(bitpattern[0]); j++) {
503 val = bitpattern[j];
504 for (; val != 0; val <<= 1) {
505 *addr = val;
506 *dummy = ~val; /* clear the test data off the bus */
507 readback = *addr;
508 if (readback != val) {
509 printf_P(PSTR("FAILURE (data line): "
510 "expected %05lx, actual %05lx\n"),
511 val, readback);
512 errs++;
513 if (ctrlc())
514 return -1;
515 }
516 *addr = ~val;
517 *dummy = val;
518 readback = *addr;
519 if (readback != ~val) {
520 printf_P(PSTR("FAILURE (data line): "
521 "Is %05lx, should be %05lx\n"),
522 readback, ~val);
523 errs++;
524 if (ctrlc())
525 return -1;
526 }
527 }
528 }
529
530 /*
531 * Based on code whose Original Author and Copyright
532 * information follows: Copyright (c) 1998 by Michael
533 * Barr. This software is placed into the public
534 * domain and may be used for any purpose. However,
535 * this notice must not be changed or removed and no
536 * warranty is either expressed or implied by its
537 * publication or distribution.
538 */
539
540 /*
541 * Address line test
542
543 * Description: Test the address bus wiring in a
544 * memory region by performing a walking
545 * 1's test on the relevant bits of the
546 * address and checking for aliasing.
547 * This test will find single-bit
548 * address failures such as stuck-high,
549 * stuck-low, and shorted pins. The base
550 * address and size of the region are
551 * selected by the caller.
552
553 * Notes: For best results, the selected base
554 * address should have enough LSB 0's to
555 * guarantee single address bit changes.
556 * For example, to test a 64-Kbyte
557 * region, select a base address on a
558 * 64-Kbyte boundary. Also, select the
559 * region size as a power-of-two if at
560 * all possible.
561 *
562 * Returns: 0 if the test succeeds, 1 if the test fails.
563 */
564 pattern = (vu_long) 0xaaaaaaaa;
565 anti_pattern = (vu_long) 0x55555555;
566
567 debug("%s:%d: length = 0x%.5lx\n", __func__, __LINE__, num_words);
568 /*
569 * Write the default pattern at each of the
570 * power-of-two offsets.
571 */
572 for (offset = 1; offset < num_words; offset <<= 1)
573 addr[offset] = pattern;
574
575 /*
576 * Check for address bits stuck high.
577 */
578 test_offset = 0;
579 addr[test_offset] = anti_pattern;
580
581 for (offset = 1; offset < num_words; offset <<= 1) {
582 temp = addr[offset];
583 if (temp != pattern) {
584 printf_P(PSTR("\nFAILURE: Address bit stuck high @ 0x%.5lx:"
585 " expected 0x%.5lx, actual 0x%.5lx\n"),
586 start_addr + offset*sizeof(vu_long),
587 pattern, temp);
588 errs++;
589 if (ctrlc())
590 return -1;
591 }
592 }
593 addr[test_offset] = pattern;
594
595 /*
596 * Check for addr bits stuck low or shorted.
597 */
598 for (test_offset = 1; test_offset < num_words; test_offset <<= 1) {
599 addr[test_offset] = anti_pattern;
600
601 for (offset = 1; offset < num_words; offset <<= 1) {
602 temp = addr[offset];
603 if ((temp != pattern) && (offset != test_offset)) {
604 printf_P(PSTR("\nFAILURE: Address bit stuck low or"
605 " shorted @ 0x%.5lx: expected 0x%.5lx,"
606 " actual 0x%.5lx\n"),
607 start_addr + offset*sizeof(vu_long),
608 pattern, temp);
609 errs++;
610 if (ctrlc())
611 return -1;
612 }
613 }
614 addr[test_offset] = pattern;
615 }
616
617 /*
618 * Description: Test the integrity of a physical
619 * memory device by performing an
620 * increment/decrement test over the
621 * entire region. In the process every
622 * storage bit in the device is tested
623 * as a zero and a one. The base address
624 * and the size of the region are
625 * selected by the caller.
626 *
627 * Returns: 0 if the test succeeds, 1 if the test fails.
628 */
629 num_words++;
630
631 /*
632 * Fill memory with a known pattern.
633 */
634 for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
635 addr[offset] = pattern;
636 }
637
638 /*
639 * Check each location and invert it for the second pass.
640 */
641 for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
642 temp = addr[offset];
643 if (temp != pattern) {
644 printf_P(PSTR("\nFAILURE (read/write) @ 0x%.5lx:"
645 " expected 0x%.5lx, actual 0x%.5lx)\n"),
646 start_addr + offset*sizeof(vu_long),
647 pattern, temp);
648 errs++;
649 if (ctrlc())
650 return -1;
651 }
652
653 anti_pattern = ~pattern;
654 addr[offset] = anti_pattern;
655 }
656
657 /*
658 * Check each location for the inverted pattern and zero it.
659 */
660 for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
661 WATCHDOG_RESET();
662 anti_pattern = ~pattern;
663 temp = addr[offset];
664 if (temp != anti_pattern) {
665 printf_P(PSTR("\nFAILURE (read/write): @ 0x%.5lx:"
666 " expected 0x%.5lx, actual 0x%.5lx)\n"),
667 start_addr + offset*sizeof(vu_long),
668 anti_pattern, temp);
669 errs++;
670 if (ctrlc())
671 return -1;
672 }
673 addr[offset] = 0;
674 }
675
676 return 0;
677 }
678
679 static uint32_t mem_test_quick(vu_long *buf, uint32_t start_addr, uint32_t end_addr,
680 vu_long pattern, int iteration)
681 {
682 vu_long *end;
683 vu_long *addr;
684 uint32_t errs = 0;
685 uint32_t incr, length;
686 uint32_t val, readback;
687
688 /* Alternate the pattern */
689 incr = 1;
690 if (iteration & 1) {
691 incr = -incr;
692 /*
693 * Flip the pattern each time to make lots of zeros and
694 * then, the next time, lots of ones. We decrement
695 * the "negative" patterns and increment the "positive"
696 * patterns to preserve this feature.
697 */
698 if (pattern & 0x80000000)
699 pattern = -pattern; /* complement & increment */
700 else
701 pattern = ~pattern;
702 }
703 length = (end_addr - start_addr) / sizeof(uint32_t);
704 end = buf + length;
705 printf_P(PSTR("\rPattern %08lX Writing..."
706 "%12s"
707 "\b\b\b\b\b\b\b\b\b\b"),
708 pattern, "");
709
710 for (addr = buf, val = pattern; addr < end; addr++) {
711 *addr = val;
712 val += incr;
713 }
714
715 my_puts_P(PSTR("Reading..."));
716
717 for (addr = buf, val = pattern; addr < end; addr++) {
718 readback = *addr;
719 if (readback != val) {
720 uint32_t offset = addr - buf;
721
722 printf_P(PSTR("\nMem error @ 0x%08X: "
723 "found %08lX, expected %08lX\n"),
724 (unsigned int)(uintptr_t)(start_addr + offset*sizeof(vu_long)),
725 readback, val);
726 errs++;
727 if (ctrlc())
728 return -1;
729 }
730 val += incr;
731 }
732
733 return 0;
734 }
735
736 /*
737 * Perform a memory test. A more complete alternative test can be
738 * configured using CONFIG_SYS_ALT_MEMTEST. The complete test loops until
739 * interrupted by ctrl-c or by a failure of one of the sub-tests.
740 */
741 command_ret_t do_mem_mtest(cmd_tbl_t *cmdtp, int flag, int argc,
742 char * const argv[])
743 {
744 uint32_t start, end;
745 vu_long *buf, *dummy;
746 int iteration_limit;
747 /* TODO: command_ret_t */
748 int ret;
749 uint32_t errs = 0; /* number of errors, or -1 if interrupted */
750 uint32_t pattern;
751 int iteration;
752 #if defined(CONFIG_SYS_ALT_MEMTEST)
753 const int alt_test = 1;
754 #else
755 const int alt_test = 0;
756 #endif
757
758 if (argc > 1)
759 start = strtoul(argv[1], NULL, 16);
760 else
761 start = CONFIG_SYS_MEMTEST_START;
762
763 if (argc > 2)
764 end = strtoul(argv[2], NULL, 16);
765 else
766 end = CONFIG_SYS_MEMTEST_END;
767
768 if (argc > 3)
769 pattern = (uint32_t)strtoul(argv[3], NULL, 16);
770 else
771 pattern = 0;
772
773 if (argc > 4)
774 iteration_limit = (uint32_t)strtoul(argv[4], NULL, 16);
775 else
776 iteration_limit = 0;
777
778 printf_P(PSTR("Testing %08x ... %08x:\n"), (unsigned int)start, (unsigned int)end);
779 debug("%s:%d: start %#05lx end %#05lx\n", __func__, __LINE__,
780 start, end);
781
782 /* TODO: */
783 // buf = map_sysmem(start, end - start);
784 // dummy = map_sysmem(CONFIG_SYS_MEMTEST_SCRATCH, sizeof(vu_long));
785 for (iteration = 0;
786 !iteration_limit || iteration < iteration_limit;
787 iteration++) {
788 if (ctrlc()) {
789 errs = -1UL;
790 break;
791 }
792
793 printf_P(PSTR("Iteration: %6d\r"), iteration + 1);
794 debug("\n");
795 if (alt_test) {
796 errs = mem_test_alt(buf, start, end, dummy);
797 } else {
798 errs = mem_test_quick(buf, start, end, pattern,
799 iteration);
800 }
801 if (errs == -1UL)
802 break;
803 }
804
805 if (errs == -1UL) {
806 /* Memory test was aborted - write a newline to finish off */
807 putc('\n');
808 ret = 1;
809 } else {
810 printf_P(PSTR("Tested %d iteration(s) with %lu errors.\n"),
811 iteration, errs);
812 ret = errs != 0;
813 }
814
815 return ret; /* not reached */
816 }
817 #endif /* CONFIG_CMD_MEMTEST */