]> cloudbase.mooo.com Git - z180-stamp.git/blob - avr/z180-serv.c
Expand image file die disk size in cp/m login function. Use relative drive number...
[z180-stamp.git] / avr / z180-serv.c
1 /*
2 * (C) Copyright 2014-2016 Leo C. <erbl259-lmu@yahoo.de>
3 *
4 * SPDX-License-Identifier: GPL-2.0
5 */
6
7 #include "common.h"
8 #include <stdlib.h>
9 #include <string.h>
10 #include <stdbool.h>
11 #include <util/atomic.h>
12
13 #include "config.h"
14 #include "background.h"
15 #include "env.h"
16 #include "ff.h"
17 #include "serial.h"
18 #include "z80-if.h"
19 #include "debug.h"
20 #include "print-utils.h"
21 #include "z180-serv.h"
22 #include "timer.h"
23 #include "time.h"
24 #include "bcd.h"
25 #include "rtc.h"
26
27 #define DEBUG_CPM_SDIO 0 /* set to 1 to debug */
28
29 #define debug_cpmsd(fmt, args...) \
30 debug_cond(DEBUG_CPM_SDIO, fmt, ##args)
31
32
33 /*--------------------------------------------------------------------------*/
34
35 struct msg_item {
36 uint8_t fct;
37 uint8_t sub_min, sub_max;
38 void (*func)(uint8_t, int, uint8_t *);
39 };
40
41 uint32_t msg_to_addr(uint8_t *msg)
42 {
43 union {
44 uint32_t as32;
45 uint8_t as8[4];
46 } addr;
47
48 addr.as8[0] = msg[0];
49 addr.as8[1] = msg[1];
50 addr.as8[2] = msg[2];
51 addr.as8[3] = 0;
52
53 return addr.as32;
54 }
55
56
57 static int msg_xmit_header(uint8_t func, uint8_t subf, int len)
58 {
59 z80_memfifo_putc(fifo_msgout, 0xAE);
60 z80_memfifo_putc(fifo_msgout, len+2);
61 z80_memfifo_putc(fifo_msgout, func);
62 z80_memfifo_putc(fifo_msgout, subf);
63
64 return 0;
65 }
66
67 int msg_xmit(uint8_t func, uint8_t subf, int len, uint8_t *msg)
68 {
69 msg_xmit_header(func, subf, len);
70 while (len--)
71 z80_memfifo_putc(fifo_msgout, *msg++);
72
73 return 0;
74 }
75
76 void do_msg_ini_memfifo(uint8_t subf, int len, uint8_t * msg)
77 {
78 (void)len;
79
80 z80_memfifo_init(subf, msg_to_addr(msg));
81 }
82
83
84 void do_msg_char_out(uint8_t subf, int len, uint8_t * msg)
85 {
86 (void)subf;
87
88 while (len--)
89 putchar(*msg++);
90 }
91
92 /* echo message */
93 void do_msg_echo(uint8_t subf, int len, uint8_t * msg)
94 {
95 (void)subf;
96
97 /* send re-echo */
98 msg_xmit(1, 3, len, msg);
99 }
100
101 /* get timer */
102 void do_msg_get_timer(uint8_t subf, int len, uint8_t * msg)
103 {
104 uint32_t time_ms = (len >= 4) ? *(uint32_t *) msg : 0;
105
106 time_ms = get_timer(time_ms);
107 msg_xmit(3, subf, sizeof(time_ms), (uint8_t *) &time_ms);
108 }
109
110 /* ---------------------------------------------------------------------------*/
111
112 #define CPM_DAY_OFFSET ((1978-1900) * 365 + 19) /* 19 leap years */
113
114 /*
115 * Convert CP/M time stamp to a broken-down time structure
116 *
117 */
118 int mk_date_time (int len, uint8_t *msg, struct tm *tmp)
119 {
120 time_t stamp;
121
122 if (len != 5)
123 return -1;
124
125 /* days since 2000-01-01 */
126 long days = msg[3] + (msg[4] << 8) - 8036;
127
128 if (days < 0)
129 return -1;
130
131 stamp = days * ONE_DAY;
132 stamp += bcd2bin(msg[0]);
133 stamp += bcd2bin(msg[1]) * 60 ;
134 stamp += bcd2bin(msg[2]) * 3600L;
135 gmtime_r(&stamp, tmp);
136 return 0;
137 }
138
139 void mk_cpm_time(struct tm *tmp, uint8_t cpm_time[5])
140 {
141 uint16_t days = 1;
142 uint_fast8_t leap=2;
143
144 for (int year=78; year < tmp->tm_year; year++) {
145 days = days + 365 + (leap == 0);
146 leap = (leap+1)%4;
147 }
148 days += tmp->tm_yday;
149
150 cpm_time[0] = bin2bcd(tmp->tm_sec);
151 cpm_time[1] = bin2bcd(tmp->tm_min);
152 cpm_time[2] = bin2bcd(tmp->tm_hour);
153 cpm_time[3] = days;
154 cpm_time[4] = days >> 8;
155 }
156
157 /* get/set cp/m time */
158 void do_msg_get_set_time(uint8_t subf, int len, uint8_t * msg)
159 {
160 struct tm t;
161 uint8_t cpm_time[5];
162 int rc;
163
164 memset(cpm_time, 0, ARRAY_SIZE(cpm_time));
165
166 switch (subf) {
167 case 3: /* set date & time */
168 /* initialize t with current time */
169 rc = rtc_get (&t);
170
171 if (rc >= 0) {
172 /* insert new date & time */
173 if (mk_date_time (len, msg, &t) != 0) {
174 my_puts_P(PSTR("## set_time: Bad date format\n"));
175 break;
176 }
177
178 time_t time;
179 time = mk_gmtime(&t);
180 gmtime_r(&time, &t);
181
182 /* and write to RTC */
183 rc = rtc_set (&t);
184 if(rc)
185 my_puts_P(PSTR("## set_time: Set date failed\n"));
186 } else {
187 my_puts_P(PSTR("## set_time: Get date failed\n"));
188 }
189 /* FALL TROUGH */
190 case 2: /* get date & time */
191 rc = rtc_get (&t);
192 if (rc >= 0) {
193 time_t time;
194 time = mk_gmtime(&t);
195 //mktime(&t);
196 gmtime_r(&time, &t);
197
198 mk_cpm_time(&t, cpm_time);
199 } else {
200 my_puts_P(PSTR("## get_time: Get date failed\n"));
201 }
202 break;
203 }
204
205 msg_xmit(3, subf, sizeof(cpm_time), cpm_time);
206 }
207
208 /* ---------------------------------------------------------------------------*/
209
210 /* TODO: Variable Disk Format */
211 #define CONFIG_CPM_DISKSIZE (8*1024*1024L)
212
213 struct cpm_drive_s {
214 uint8_t drv;
215 uint8_t device;
216 char *img_name;
217 bool dirty;
218 FIL fd;
219 };
220
221 static uint8_t disk_buffer[CONFIG_CPM_BLOCK_SIZE];
222 static struct cpm_drive_s drv_table[CONFIG_CPM_MAX_DRIVE];
223 static int handle_cpm_drv_to;
224
225
226 int cpm_drv_to(int state)
227 {
228 static uint32_t ts;
229
230 switch(state) {
231 case 0:
232 break;
233
234 case 1:
235 ts = get_timer(0);
236 state = 2;
237 break;
238
239 case 2:
240 if (get_timer(ts) > 1000) {
241 for (uint_fast8_t i=0; i < CONFIG_CPM_MAX_DRIVE; i++) {
242 if (drv_table[i].dirty) {
243 f_sync(&drv_table[i].fd);
244 drv_table[i].dirty = false;
245 debug_cpmsd("## %7lu f_sync: %c:\n", get_timer(0), i + CONFIG_CPM_BASE_DRIVE);
246 }
247 }
248 state = 0;
249 }
250 }
251 return state;
252 }
253
254
255 void msg_cpm_result(uint8_t subf, uint8_t rc, int res)
256 {
257 uint8_t result_msg[3];
258
259 if (res)
260 rc |= 0x80;
261
262 result_msg[0] = rc;
263 result_msg[1] = res;
264 result_msg[2] = res >> 8;
265
266 if (rc) {
267 debug_cpmsd("###%7lu error rc: %.02x, res: %d\n", get_timer(0), rc, res);
268 }
269
270 msg_xmit(2, subf, sizeof(result_msg), result_msg);
271 }
272
273 /*
274 db 2 ; disk command
275 ds 1 ; subcommand (login/read/write)
276 ds 1 ; @adrv (8 bits) +0
277 ds 1 ; @rdrv (8 bits) +1
278 ds 3 ; @xdph (24 bits) +2
279 */
280
281 void do_msg_cpm_login(uint8_t subf, int len, uint8_t * msg)
282 {
283 FRESULT res = 0;
284 uint8_t drv;
285 char *np;
286
287 (void)subf;
288
289 if (len != 5) {
290 return msg_cpm_result(subf, 0x01, res);
291 }
292
293 debug_cpmsd("\n## %7lu login: %c:\n", get_timer(0), msg[1]+CONFIG_CPM_BASE_DRIVE);
294
295 /* Get relative drive number */
296 drv = msg[1];
297 if ( drv>= CONFIG_CPM_MAX_DRIVE) {
298 return msg_cpm_result(subf, 0x02, res);
299 }
300
301 /*
302 uint32_t dph = ((uint32_t)msg[4] << 16) + ((uint16_t)msg[3] << 8) + msg[2];
303 */
304
305 if (drv_table[drv].img_name != NULL) {
306 debug_cpmsd("## %7lu close: '%s'\n", get_timer(0), drv_table[drv].img_name);
307 f_close(&drv_table[drv].fd);
308 drv_table[drv].dirty = false;
309 free(drv_table[drv].img_name);
310 drv_table[drv].img_name = NULL;
311 }
312
313 strcpy_P((char *)disk_buffer, PSTR("dsk0"));
314 disk_buffer[3] = msg[0] + '0';
315 if (((np = getenv_char((char*)disk_buffer)) == NULL) ||
316 ((drv_table[drv].img_name = strdup(np)) == NULL)) {
317 return msg_cpm_result(subf, 0x03, res);
318 }
319
320
321 res = f_open(&drv_table[drv].fd, drv_table[drv].img_name,
322 FA_WRITE | FA_READ);
323
324 debug_cpmsd("## %7lu open: '%s', (env: '%s'), res: %d\n", get_timer(0),
325 drv_table[drv].img_name, disk_buffer, res);
326
327 if (!res && f_size(&drv_table[drv].fd) < CONFIG_CPM_DISKSIZE) {
328 unsigned int bw;
329
330 debug_cpmsd(" expanding image file from %ld to %ld\n",
331 f_size(&drv_table[drv].fd), CONFIG_CPM_DISKSIZE);
332
333 res = f_lseek(&drv_table[drv].fd, CONFIG_CPM_DISKSIZE-CONFIG_CPM_BLOCK_SIZE);
334 if (!res) {
335 memset(disk_buffer, 0xe5, CONFIG_CPM_BLOCK_SIZE);
336 res = f_write(&drv_table[drv].fd, disk_buffer, CONFIG_CPM_BLOCK_SIZE, &bw);
337 if (res || bw < CONFIG_CPM_BLOCK_SIZE) {
338 debug_cpmsd(" failed! res: %d, bytes written: %u\n", res, bw);
339 }
340 drv_table[drv].dirty = true;
341 bg_setstat(handle_cpm_drv_to, 1);
342 }
343 }
344
345 /* send result*/
346 msg_cpm_result(subf, 0x00, res);
347 }
348
349
350 /*
351 db 2 ; disk command
352 ds 1 ; subcommand (login/read/write)
353 ds 1 ; @adrv (8 bits) +0
354 ds 1 ; @rdrv (8 bits) +1
355 ds 2 ; @trk (16 bits) +2
356 ds 2 ; @sect(16 bits) +4
357 ds 1 ; @cnt (8 bits) +6
358 ds 3 ; phys. transfer addr +7
359 */
360
361 #define ADRV 0
362 #define RDRV 1
363 #define TRK 2
364 #define SEC 4
365 #define CNT 6
366 #define ADDR 7
367
368 void do_msg_cpm_rw(uint8_t subf, int len, uint8_t * msg)
369 {
370 uint8_t drv;
371 uint32_t addr;
372 uint32_t pos;
373 uint8_t secs;
374 bool dowrite = (subf == 2);
375 FRESULT res = 0;
376 uint8_t rc = 0;
377 bool buserr = 0;
378
379 if (len != 10) {
380 return msg_cpm_result(subf, 0x01, res);
381 }
382
383 drv = msg[RDRV];
384 if ( drv>= CONFIG_CPM_MAX_DRIVE) {
385 return msg_cpm_result(subf, 0x02, res);
386 }
387
388 secs = msg[CNT];
389 addr = ((uint32_t)msg[ADDR+2] << 16) + ((uint16_t)msg[ADDR+1] << 8) + msg[ADDR];
390
391
392 /* TODO: tracks per sector from dpb */
393 pos = (((uint16_t)(msg[TRK+1] << 8) + msg[TRK]) * 8
394 + ((uint32_t)(msg[SEC+1] << 8) + msg[SEC])) * CONFIG_CPM_BLOCK_SIZE;
395
396 debug_cpmsd("## %7lu cpm_rw: %s %c: trk:%4d, sec: %d, pos: %.8lx, secs: %2d, "
397 "addr: %.5lx\n", get_timer(0), dowrite ? "write" : " read",
398 msg[RDRV]+CONFIG_CPM_BASE_DRIVE,
399 ((uint16_t)(msg[TRK+1] << 8) + msg[TRK]), msg[SEC], pos, msg[CNT], addr);
400
401 if (pos + secs * CONFIG_CPM_BLOCK_SIZE > CONFIG_CPM_DISKSIZE) {
402 debug_cpmsd(" access > DISKSIZE (%.8lx > %.8lx) aborted!\n",
403 pos + secs * CONFIG_CPM_BLOCK_SIZE, CONFIG_CPM_DISKSIZE);
404 return msg_cpm_result(subf, 0x04, res);
405 }
406
407 res = f_lseek(&drv_table[drv].fd, pos);
408
409 while (!res && secs--) {
410 unsigned int brw;
411 if (dowrite) {
412 if (!(z80_bus_cmd(Request) & ZST_ACQUIRED)) {
413 buserr = 1;
414 break;
415 } else {
416 z80_read_block(disk_buffer, addr, CONFIG_CPM_BLOCK_SIZE);
417 z80_bus_cmd(Release);
418 }
419 res = f_write(&drv_table[drv].fd, disk_buffer, CONFIG_CPM_BLOCK_SIZE, &brw);
420 } else {
421 res = f_read(&drv_table[drv].fd, disk_buffer, CONFIG_CPM_BLOCK_SIZE, &brw);
422 if (res == FR_OK) {
423 if (!(z80_bus_cmd(Request) & ZST_ACQUIRED)) {
424 buserr = 1;
425 break;
426 } else {
427 z80_write_block(disk_buffer, addr, CONFIG_CPM_BLOCK_SIZE);
428 z80_bus_cmd(Release);
429 }
430 }
431 }
432 if (brw != CONFIG_CPM_BLOCK_SIZE) {
433 debug_cpmsd(" short read or write: res: %d, bytes rd/wr: %u\n", res, brw);
434 res = 64;
435 }
436 addr += CONFIG_CPM_BLOCK_SIZE;
437 }
438
439 if (dowrite && !res) {
440 drv_table[drv].dirty = true;
441 bg_setstat(handle_cpm_drv_to, 1);
442 }
443
444 if (buserr) {
445 debug_cpmsd("Bus timeout\n");
446 rc = 0x03;
447 }
448
449 /* send result*/
450 msg_cpm_result(subf, rc, res);
451 }
452
453
454 const FLASH struct msg_item z80_messages[] =
455 {
456 { 0, /* fct nr. */
457 1, 3, /* sub fct nr. from, to */
458 do_msg_ini_memfifo},
459 { 1,
460 1, 1,
461 do_msg_char_out},
462 { 1,
463 2, 2,
464 do_msg_echo},
465 { 2,
466 0, 0,
467 do_msg_cpm_login},
468 { 2,
469 1, 2,
470 do_msg_cpm_rw},
471 { 3,
472 1, 1,
473 do_msg_get_timer},
474 { 3,
475 2, 3, /* 2: get, 3: set time and date */
476 do_msg_get_set_time},
477 { 0xff, /* end mark */
478 0, 0,
479 0},
480
481 };
482
483
484
485
486 void do_message(int len, uint8_t *msg)
487 {
488 uint8_t fct, sub_fct;
489 int_fast8_t i = 0;
490
491 if (len >= 2) {
492 fct = *msg++;
493 sub_fct = *msg++;
494 len -= 2;
495
496 while (fct != z80_messages[i].fct) {
497 if (z80_messages[i].fct == 0xff) {
498 DBG_P(1, "do_message: Unknown function: %i, %i\n",
499 fct, sub_fct);
500 return; /* TODO: unknown message # */
501 }
502
503 ++i;
504 }
505
506 while (fct == z80_messages[i].fct) {
507 if (sub_fct >= z80_messages[i].sub_min &&
508 sub_fct <= z80_messages[i].sub_max )
509 break;
510 ++i;
511 }
512
513 if (z80_messages[i].fct != fct) {
514 DBG_P(1, "do_message: Unknown sub function: %i, %i\n",
515 fct, sub_fct);
516 return; /* TODO: unknown message sub# */
517 }
518
519 (z80_messages[i].func)(sub_fct, len, msg);
520
521
522 } else {
523 /* TODO: error */
524 DBG_P(1, "do_message: to few arguments (%i); this shouldn't happen!\n", len);
525 }
526 }
527
528
529
530 #define CTRBUF_LEN 256
531
532 void check_msg_fifo(void)
533 {
534 int ch;
535 static int_fast8_t state;
536 static int msglen,idx;
537 static uint8_t buffer[CTRBUF_LEN];
538
539 while ((ch = z80_memfifo_getc(fifo_msgin)) >= 0) {
540 switch (state) {
541 case 0: /* wait for start of message */
542 if (ch == 0xAE) { /* TODO: magic number */
543 msglen = 0;
544 idx = 0;
545 state = 1;
546 }
547 break;
548 case 1: /* get msg len */
549 if (ch > 0 && ch <= CTRBUF_LEN) {
550 msglen = ch;
551 state = 2;
552 } else
553 state = 0;
554 break;
555 case 2: /* get message */
556 buffer[idx++] = ch;
557 if (idx == msglen) {
558 do_message(msglen, buffer);
559 state = 0;
560 }
561 break;
562 }
563 }
564 }
565
566
567 int msg_handling(int state)
568 {
569 bool pending;
570
571 ATOMIC_BLOCK(ATOMIC_FORCEON) {
572 pending = (Stat & S_MSG_PENDING) != 0;
573 Stat &= ~S_MSG_PENDING;
574 }
575
576 if (pending) {
577 uint8_t init_request;
578 z80_bus_cmd(Request);
579 init_request = z80_read(0x43);
580 z80_bus_cmd(Release);
581 if ( init_request != 0) {
582 /* Get address of fifo 0 */
583 z80_bus_cmd(Request);
584 uint32_t fifo_addr = z80_read(0x40) +
585 ((uint16_t) z80_read(0x40+1) << 8) +
586 ((uint32_t) z80_read(0x40+2) << 16);
587 z80_write(0x43, 0);
588 z80_bus_cmd(Release);
589
590 if (fifo_addr != 0) {
591 z80_memfifo_init(fifo_msgin, fifo_addr);
592 state = 1;
593 } else
594 state = 0;
595
596 } else {
597 check_msg_fifo();
598 }
599 }
600
601 return state;
602 }
603
604
605 static int handle_msg_handling;
606
607 void setup_z180_serv(void)
608 {
609
610 handle_msg_handling = bg_register(msg_handling, 0);
611 handle_cpm_drv_to = bg_register(cpm_drv_to, 0);
612 }
613
614 void restart_z180_serv(void)
615 {
616 z80_bus_cmd(Request);
617 z80_memset(0x40, 0, 4);
618 z80_bus_cmd(Release);
619
620 for (int i = 0; i < NUM_FIFOS; i++)
621 z80_memfifo_init(i, 0);
622 bg_setstat(handle_msg_handling, 0);
623
624 }
625
626 #if 0
627 /*--------------------------------------------------------------------------*/
628
629 const FLASH uint8_t iniprog[] = {
630 0xAF, // xor a
631 0xED, 0x39, 0x36, // out0 (rcr),a ;disable DRAM refresh
632 0x3E, 0x30, // ld a,030h
633 0xED, 0x39, 0x32 //out0 (dcntl),a ;0 mem, max i/0 wait states
634 };
635
636 const FLASH uint8_t sertest[] = {
637 0xAF, // xor a
638 0xED, 0x39, 0x36, // out0 (rcr),a ;disable DRAM refresh
639 0x3E, 0x30, // ld a,030h
640 0xED, 0x39, 0x32, // out0 (dcntl),a ;0 mem, max i/0 wait states
641 0x3E, 0x80, // ld a,M_MPBT ;no MP, PS=10, DR=16, SS=0
642 0xED, 0x39, 0x03, // out0 (cntlb1),a
643 0x3E, 0x64, // ld a,M_RE + M_TE + M_MOD2 ;
644 0xED, 0x39, 0x01, // out0 (cntla1),a
645 0x3E, 0x00, // ld a,0
646 0xED, 0x39, 0x05, // out0 (stat1),a ;Enable rx interrupts
647 0xED, 0x38, 0x05, //l0:in0 a,(stat1)
648 0xE6, 0x80, // and 80h
649 0x28, 0xF9, // jr z,l0
650 0xED, 0x00, 0x09, // in0 b,(rdr1)
651 0xED, 0x38, 0x05, //l1:in0 a,(stat1)
652 0xE6, 0x02, // and 02h
653 0x28, 0xF9, // jr z,l1
654 0xED, 0x01, 0x07, // out0 (tdr1),b
655 0x18, 0xEA, // jr l0
656 };
657
658 const FLASH uint8_t test1[] = {
659 0xAF, // xor a
660 0xED, 0x39, 0x36, // out0 (rcr),a ;disable DRAM refresh
661 0x3E, 0x30, // ld a,030h
662 0xED, 0x39, 0x32, // out0 (dcntl),a ;0 mem, max i/0 wait states
663 0x21, 0x1E, 0x00, // ld hl,dmclrt ;load DMA registers
664 0x06, 0x08, // ld b,dmct_e-dmclrt
665 0x0E, 0x20, // ld c,sar0l
666 0xED, 0x93, // otimr
667 0x3E, 0xC3, // ld a,0c3h ;dst +1, src +1, burst
668 0xED, 0x39, 0x31, // out0 (dmode),a ;
669 0x3E, 0x62, // ld a,062h ;enable dma0,
670 0xED, 0x39, 0x30, //cl_1: out0 (dstat),a ;copy 64k
671 0x18, 0xFB, // jr cl_1 ;
672 0x00, 0x00, //dmclrt: dw 0 ;src (inc)
673 0x00, // db 0 ;src
674 0x00, 0x00, // dw 0 ;dst (inc),
675 0x00, // db 0 ;dst
676 0x00, 0x00, // dw 0 ;count (64k)
677 };
678 #endif